Major - ECS - V12.0.0

This commit is contained in:
CatChow0 2025-06-24 14:24:14 +02:00
parent 688fe7ff1c
commit 039b034175
13 changed files with 1070 additions and 273 deletions

View File

@ -119,6 +119,15 @@
<ClInclude Include="src\inc\system\camera_class.h" />
<ClInclude Include="src\inc\system\d_3d_class.h" />
<ClInclude Include="src\inc\system\display_plane_class.h" />
<ClInclude Include="src\inc\system\ecs\component.h" />
<ClInclude Include="src\inc\system\ecs\components\identity_component.h" />
<ClInclude Include="src\inc\system\ecs\components\physics_component.h" />
<ClInclude Include="src\inc\system\ecs\components\render_component.h" />
<ClInclude Include="src\inc\system\ecs\components\shader_component.h" />
<ClInclude Include="src\inc\system\ecs\components\transform_component.h" />
<ClInclude Include="src\inc\system\ecs\entity.h" />
<ClInclude Include="src\inc\system\ecs\entity_manager.h" />
<ClInclude Include="src\inc\system\ecs\systems\render_system.h" />
<ClInclude Include="src\inc\system\font_class.h" />
<ClInclude Include="src\inc\system\fps_class.h" />
<ClInclude Include="src\inc\system\fps_limiter.h" />

View File

@ -10,7 +10,7 @@ Collapsed=0
[Window][Khaotic Engine]
Pos=1267,19
Size=317,441
Size=317,842
Collapsed=0
DockId=0x00000005,0
@ -28,7 +28,7 @@ DockId=0x0000000B,0
[Window][Terrain]
Pos=0,19
Size=266,609
Size=266,842
Collapsed=0
DockId=0x00000007,0

View File

@ -32,6 +32,12 @@
#include "shadow_map.h"
#include "stats.h"
#include "ecs/components/identity_component.h"
#include "ecs/components/render_component.h"
#include "ecs/components/transform_component.h"
#include "ecs/components/physics_component.h"
#include "ecs/components/shader_component.h"
#include "ecs/systems/render_system.h"
#include <fstream>
#include <WICTextureLoader.h>
@ -46,6 +52,8 @@
#include <vector>
#include <filesystem>
#include "ecs/entity_manager.h"
/////////////
// GLOBALS //
@ -234,6 +242,8 @@ private :
// ------------- OBJECTS -------------- //
// ------------------------------------ //
std::unique_ptr<ecs::EntityManager> entity_manager_;
object* selected_object_;
std::vector<object*> cubes_;
std::vector<object*> terrain_chunk_;

View File

@ -0,0 +1,40 @@
#pragma once
#include <memory>
#include <typeindex>
#include <typeinfo>
namespace ecs {
// Classe de base pour tous les composants
class Component {
public:
Component() = default;
virtual ~Component() = default;
// Empêcher la copie
Component(const Component&) = delete;
Component& operator=(const Component&) = delete;
// Permettre le déplacement
Component(Component&&) = default;
Component& operator=(Component&&) = default;
// Fonction virtuelle pour initialiser le composant
virtual void Initialize() {}
// Fonction virtuelle pour la mise à jour du composant
virtual void Update(float deltaTime) {}
};
// Alias utiles
using ComponentPtr = std::shared_ptr<Component>;
using ComponentTypeID = std::type_index;
// Fonction pour obtenir l'ID de type d'un composant
template<typename T>
ComponentTypeID GetComponentTypeID() {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
return std::type_index(typeid(T));
}
} // namespace ecs

View File

@ -0,0 +1,58 @@
#pragma once
#include "../component.h"
#include <string>
namespace ecs {
enum class ObjectType
{
Sphere,
Cube,
Terrain,
Unknown
};
class IdentityComponent : public Component {
public:
IdentityComponent() : m_id(0), m_type(ObjectType::Unknown) {}
explicit IdentityComponent(int id) : m_id(id), m_type(ObjectType::Unknown) {}
IdentityComponent(int id, const std::string& name) : m_id(id), m_name(name), m_type(ObjectType::Unknown) {}
~IdentityComponent() = default;
void Initialize() override {}
void Update(float deltaTime) override {}
// Getters et setters
int GetId() const { return m_id; }
void SetId(int id) { m_id = id; }
const std::string& GetName() const { return m_name; }
void SetName(const std::string& name) { m_name = name; }
ObjectType GetType() const { return m_type; }
void SetType(ObjectType type) { m_type = type; }
// Conversions utiles
static std::string ObjectTypeToString(ObjectType type) {
switch (type) {
case ObjectType::Cube: return "Cube";
case ObjectType::Sphere: return "Sphere";
case ObjectType::Terrain: return "Terrain";
default: return "Unknown";
}
}
static ObjectType StringToObjectType(const std::string& str) {
if (str == "Cube") return ObjectType::Cube;
if (str == "Sphere") return ObjectType::Sphere;
if (str == "Terrain") return ObjectType::Terrain;
return ObjectType::Unknown;
}
private:
int m_id;
std::string m_name;
ObjectType m_type;
};
} // namespace ecs

View File

@ -0,0 +1,110 @@
#pragma once
#include "../component.h"
#include <DirectXMath.h>
using namespace DirectX;
namespace ecs {
class PhysicsComponent : public Component {
public:
PhysicsComponent() {
m_Velocity = XMVectorZero();
m_Acceleration = XMVectorZero();
m_PreviousPosition = XMVectorZero();
m_Mass = 1.0f;
m_BoundingRadius = 1.0f;
m_IsGrounded = false;
m_IsPhysicsEnabled = false;
m_GravityEnabled = true;
}
~PhysicsComponent() = default;
void Initialize() override {
// Initialisation du composant physique
}
void Update(float deltaTime) override {
if (!m_IsPhysicsEnabled) return;
// Mise à jour de la vélocité basée sur l'accélération
m_Velocity = m_Velocity + m_Acceleration * deltaTime;
// Si la physique est activée et qu'une fonction de mise à jour de position est définie
if (m_UpdatePositionCallback) {
m_UpdatePositionCallback(m_Velocity * deltaTime);
}
}
// Lancement d'un objet
void LaunchObject(float alpha, float initialStretch, float springConstant) {
// Constants
const float gravity = -9.81f;
// Convert alpha from degrees to radians if needed
float alphaRadians = alpha * (XM_PI / 180.0f);
// Scale factors to make the physics simulation more visible
float scaleFactor = 200.0f; // Adjust this based on your world scale
// Calculate initial velocity magnitude
float velocityMagnitude = initialStretch * sqrtf(springConstant / m_Mass) *
sqrtf(1.0f - powf((m_Mass * gravity * sinf(alphaRadians) /
(springConstant * initialStretch)), 2.0f));
// Apply scale factor
velocityMagnitude *= scaleFactor;
// Calculate velocity components
XMVECTOR velocity = XMVectorSet(
velocityMagnitude * cosf(alphaRadians), // vx = v0 * cos(alpha)
velocityMagnitude * sinf(alphaRadians), // vy = v0 * sin(alpha)
0.0f, // z-component (0 for 2D trajectory)
0.0f
);
// Apply velocity
SetVelocity(velocity);
// Enable physics and reset grounded state
SetPhysicsEnabled(true);
SetGrounded(false);
}
// Setters
void SetVelocity(XMVECTOR velocity) { m_Velocity = velocity; }
void SetAcceleration(XMVECTOR acceleration) { m_Acceleration = acceleration; }
void SetMass(float mass) { m_Mass = mass; }
void SetGrounded(bool isGrounded) { m_IsGrounded = isGrounded; }
void SetPhysicsEnabled(bool enabled) { m_IsPhysicsEnabled = enabled; }
void SetBoundingRadius(float radius) { m_BoundingRadius = radius; }
void SetPreviousPosition(XMVECTOR position) { m_PreviousPosition = position; }
void SetGravityEnabled(bool enabled) { m_GravityEnabled = enabled; }
void SetUpdatePositionCallback(std::function<void(XMVECTOR)> callback) { m_UpdatePositionCallback = callback; }
// Getters
XMVECTOR GetVelocity() const { return m_Velocity; }
XMVECTOR GetAcceleration() const { return m_Acceleration; }
float GetMass() const { return m_Mass; }
bool IsGrounded() const { return m_IsGrounded; }
bool IsPhysicsEnabled() const { return m_IsPhysicsEnabled; }
float GetBoundingRadius() const { return m_BoundingRadius; }
XMVECTOR GetPreviousPosition() const { return m_PreviousPosition; }
bool IsGravityEnabled() const { return m_GravityEnabled; }
private:
XMVECTOR m_Velocity;
XMVECTOR m_Acceleration;
XMVECTOR m_PreviousPosition;
float m_Mass;
float m_BoundingRadius;
bool m_IsGrounded;
bool m_IsPhysicsEnabled;
bool m_GravityEnabled;
// Callback pour mettre à jour la position (sera connecté au TransformComponent)
std::function<void(XMVECTOR)> m_UpdatePositionCallback;
};
} // namespace ecs

View File

@ -0,0 +1,124 @@
#pragma once
#include "../component.h"
#include "model_class.h"
#include <memory>
#include <string>
#include <map>
#include <WICTextureLoader.h>
// Déclaration externe de la variable globale définie dans application_class.h
extern std::map<std::string, std::shared_ptr<model_class>> g_model_cache;
namespace ecs {
enum class TextureType
{
Diffuse,
Normal,
Specular,
Alpha,
Reflection
};
class RenderComponent : public Component {
public:
RenderComponent() : m_model(nullptr), m_isVisible(true) {}
~RenderComponent() = default;
void Initialize() override {}
void Update(float deltaTime) override {}
// Initialisation avec un modèle existant
bool InitializeWithModel(std::shared_ptr<model_class> model) {
if (!model) return false;
m_model = model;
return true;
}
// Initialisation avec un chemin de fichier
bool InitializeFromFile(ID3D11Device* device, ID3D11DeviceContext* deviceContext,
const char* modelFilename, TextureContainer& textureContainer) {
// Vérifier si le modèle existe déjà dans le cache
std::string filename(modelFilename);
auto it = g_model_cache.find(filename);
if (it != g_model_cache.end()) {
m_model = it->second;
} else {
// Créer un nouveau modèle
auto new_model = std::make_shared<model_class>();
if (!new_model->Initialize(device, deviceContext, const_cast<char*>(modelFilename), textureContainer)) {
return false;
}
g_model_cache[filename] = new_model;
m_model = new_model;
}
m_modelFilePath = modelFilename;
return true;
}
// Charger des textures depuis un chemin
bool LoadTexturesFromPath(std::vector<std::wstring>& texturePaths, TextureContainer& texturesContainer,
ID3D11Device* device, ID3D11DeviceContext* deviceContext) {
HRESULT result;
int i = 0;
for (const auto& texturePath : texturePaths) {
ID3D11ShaderResourceView* texture = nullptr;
result = DirectX::CreateWICTextureFromFile(device, deviceContext, texturePath.c_str(), nullptr, &texture);
if (FAILED(result)) {
return false;
}
texturesContainer.AssignTexture(texturesContainer, texture, texturePath, i);
i++;
}
return true;
}
// Getters et setters
std::shared_ptr<model_class> GetModel() const { return m_model; }
void SetModel(std::shared_ptr<model_class> model) { m_model = model; }
const std::string& GetModelFilePath() const { return m_modelFilePath; }
void SetModelFilePath(const std::string& path) { m_modelFilePath = path; }
bool IsVisible() const { return m_isVisible; }
void SetVisible(bool visible) { m_isVisible = visible; }
// Accès aux textures
ID3D11ShaderResourceView* GetTexture(TextureType type, int index = 0) {
if (!m_model) return nullptr;
switch (type) {
case TextureType::Diffuse:
return m_model->GetTexture(::TextureType::Diffuse, index);
case TextureType::Normal:
return m_model->GetTexture(::TextureType::Normal, index);
case TextureType::Specular:
return m_model->GetTexture(::TextureType::Specular, index);
case TextureType::Alpha:
return m_model->GetTexture(::TextureType::Alpha, index);
default:
return nullptr;
}
}
// Pour le rendu
int GetIndexCount() const {
return m_model ? m_model->GetIndexCount() : 0;
}
void Render(ID3D11DeviceContext* deviceContext) {
if (m_model && m_isVisible) {
m_model->Render(deviceContext);
}
}
private:
std::shared_ptr<model_class> m_model;
std::string m_modelFilePath;
bool m_isVisible;
};
} // namespace ecs

View File

@ -0,0 +1,67 @@
#pragma once
#include "../component.h"
namespace ecs {
enum class ShaderType
{
CEL_SHADING,
LIGHTING,
NORMAL_MAPPING,
SPECULAR_MAPPING,
REFLECTION,
REFRACTION,
TEXTURE,
SKYBOX,
SUNLIGHT,
ALPHA_MAPPING
};
class ShaderComponent : public Component {
public:
ShaderComponent() : m_activeShader(ShaderType::LIGHTING) {}
~ShaderComponent() = default;
void Initialize() override {}
void Update(float deltaTime) override {}
// Getters et setters
ShaderType GetActiveShader() const { return m_activeShader; }
void SetActiveShader(ShaderType shader) { m_activeShader = shader; }
// Conversions utiles
static ShaderType StringToShaderType(const std::string& str) {
if (str == "ALPHA_MAPPING") return ShaderType::ALPHA_MAPPING;
if (str == "CEL_SHADING") return ShaderType::CEL_SHADING;
if (str == "NORMAL_MAPPING") return ShaderType::NORMAL_MAPPING;
if (str == "SPECULAR_MAPPING") return ShaderType::SPECULAR_MAPPING;
if (str == "TEXTURE") return ShaderType::TEXTURE;
if (str == "LIGHTING") return ShaderType::LIGHTING;
if (str == "SUNLIGHT") return ShaderType::SUNLIGHT;
if (str == "SKYBOX") return ShaderType::SKYBOX;
if (str == "REFLECTION") return ShaderType::REFLECTION;
if (str == "REFRACTION") return ShaderType::REFRACTION;
return ShaderType::TEXTURE;
}
static std::string ShaderTypeToString(ShaderType type) {
switch (type) {
case ShaderType::ALPHA_MAPPING: return "ALPHA_MAPPING";
case ShaderType::CEL_SHADING: return "CEL_SHADING";
case ShaderType::NORMAL_MAPPING: return "NORMAL_MAPPING";
case ShaderType::SPECULAR_MAPPING: return "SPECULAR_MAPPING";
case ShaderType::TEXTURE: return "TEXTURE";
case ShaderType::LIGHTING: return "LIGHTING";
case ShaderType::SUNLIGHT: return "SUNLIGHT";
case ShaderType::SKYBOX: return "SKYBOX";
case ShaderType::REFLECTION: return "REFLECTION";
case ShaderType::REFRACTION: return "REFRACTION";
default: return "TEXTURE";
}
}
private:
ShaderType m_activeShader;
};
} // namespace ecs

View File

@ -0,0 +1,101 @@
#pragma once
#include "../component.h"
#include <DirectXMath.h>
using namespace DirectX;
namespace ecs {
class TransformComponent : public Component {
public:
TransformComponent() {
m_ScaleMatrix = XMMatrixIdentity();
m_RotateMatrix = XMMatrixIdentity();
m_TranslateMatrix = XMMatrixIdentity();
m_WorldMatrix = XMMatrixIdentity();
}
~TransformComponent() = default;
// Méthodes pour les matrices
void SetPosition(XMVECTOR position) {
XMFLOAT4X4 matrix;
XMStoreFloat4x4(&matrix, m_TranslateMatrix);
matrix._41 = XMVectorGetX(position);
matrix._42 = XMVectorGetY(position);
matrix._43 = XMVectorGetZ(position);
m_TranslateMatrix = XMLoadFloat4x4(&matrix);
UpdateWorldMatrix();
}
void SetRotation(XMVECTOR rotation) {
m_RotateMatrix = XMMatrixRotationRollPitchYawFromVector(rotation);
UpdateWorldMatrix();
}
void SetScale(XMVECTOR scale) {
XMFLOAT4X4 matrix;
XMStoreFloat4x4(&matrix, m_ScaleMatrix);
matrix._11 = XMVectorGetX(scale);
matrix._22 = XMVectorGetY(scale);
matrix._33 = XMVectorGetZ(scale);
m_ScaleMatrix = XMLoadFloat4x4(&matrix);
UpdateWorldMatrix();
}
XMVECTOR GetPosition() const {
XMFLOAT4X4 matrix;
XMStoreFloat4x4(&matrix, m_TranslateMatrix);
return XMVectorSet(matrix._41, matrix._42, matrix._43, 0.0f);
}
XMVECTOR GetRotation() const {
XMFLOAT4X4 matrix;
XMStoreFloat4x4(&matrix, m_RotateMatrix);
float rotationX = atan2f(matrix._32, matrix._33);
float rotationY = atan2f(-matrix._31, sqrtf(matrix._32 * matrix._32 + matrix._33 * matrix._33));
float rotationZ = atan2f(matrix._21, matrix._11);
return XMVectorSet(rotationX, rotationY, rotationZ, 0.0f);
}
XMVECTOR GetScale() const {
XMFLOAT4X4 matrix;
XMStoreFloat4x4(&matrix, m_ScaleMatrix);
XMVECTOR row1 = XMLoadFloat3(reinterpret_cast<XMFLOAT3*>(&matrix._11));
XMVECTOR row2 = XMLoadFloat3(reinterpret_cast<XMFLOAT3*>(&matrix._21));
XMVECTOR row3 = XMLoadFloat3(reinterpret_cast<XMFLOAT3*>(&matrix._31));
XMVECTOR scale = XMVectorSet(
XMVectorGetX(XMVector3Length(row1)),
XMVectorGetX(XMVector3Length(row2)),
XMVectorGetX(XMVector3Length(row3)),
0.0f
);
return scale;
}
void UpdateWorldMatrix() {
m_WorldMatrix = m_ScaleMatrix * m_RotateMatrix * m_TranslateMatrix;
}
// Getters pour les matrices
XMMATRIX GetScaleMatrix() const { return m_ScaleMatrix; }
XMMATRIX GetRotateMatrix() const { return m_RotateMatrix; }
XMMATRIX GetTranslateMatrix() const { return m_TranslateMatrix; }
XMMATRIX GetWorldMatrix() const { return m_WorldMatrix; }
// Setters pour les matrices
void SetScaleMatrix(XMMATRIX matrix) { m_ScaleMatrix = matrix; UpdateWorldMatrix(); }
void SetRotateMatrix(XMMATRIX matrix) { m_RotateMatrix = matrix; UpdateWorldMatrix(); }
void SetTranslateMatrix(XMMATRIX matrix) { m_TranslateMatrix = matrix; UpdateWorldMatrix(); }
private:
XMMATRIX m_ScaleMatrix;
XMMATRIX m_RotateMatrix;
XMMATRIX m_TranslateMatrix;
XMMATRIX m_WorldMatrix;
};
} // namespace ecs

View File

@ -0,0 +1,101 @@
#pragma once
#include "component.h"
#include <unordered_map>
#include <vector>
#include <memory>
#include <algorithm>
#include <cassert>
namespace ecs {
// Identifiant unique pour les entités
using EntityID = uint32_t;
class Entity {
public:
explicit Entity(EntityID id) : m_ID(id) {}
~Entity() = default;
// Empêcher la copie
Entity(const Entity&) = delete;
Entity& operator=(const Entity&) = delete;
// Permettre le déplacement
Entity(Entity&&) = default;
Entity& operator=(Entity&&) = default;
// Getter pour l'ID
EntityID GetID() const { return m_ID; }
// Ajouter un composant
template<typename T, typename... Args>
std::shared_ptr<T> AddComponent(Args&&... args) {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
ComponentTypeID typeID = GetComponentTypeID<T>();
// Vérifier si le composant existe déjà
if (m_Components.find(typeID) != m_Components.end()) {
return std::static_pointer_cast<T>(m_Components[typeID]);
}
// Créer et ajouter le composant
auto component = std::make_shared<T>(std::forward<Args>(args)...);
m_Components[typeID] = component;
// Initialiser le composant
component->Initialize();
return component;
}
// Récupérer un composant
template<typename T>
std::shared_ptr<T> GetComponent() {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
ComponentTypeID typeID = GetComponentTypeID<T>();
auto it = m_Components.find(typeID);
if (it != m_Components.end()) {
return std::static_pointer_cast<T>(it->second);
}
return nullptr;
}
// Vérifier si l'entité possède un composant
template<typename T>
bool HasComponent() const {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
ComponentTypeID typeID = GetComponentTypeID<T>();
return m_Components.find(typeID) != m_Components.end();
}
// Supprimer un composant
template<typename T>
void RemoveComponent() {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
ComponentTypeID typeID = GetComponentTypeID<T>();
auto it = m_Components.find(typeID);
if (it != m_Components.end()) {
m_Components.erase(it);
}
}
// Mettre à jour tous les composants
void UpdateComponents(float deltaTime) {
for (auto& [typeID, component] : m_Components) {
component->Update(deltaTime);
}
}
private:
EntityID m_ID;
std::unordered_map<ComponentTypeID, ComponentPtr> m_Components;
};
} // namespace ecs

View File

@ -0,0 +1,95 @@
#pragma once
#include "entity.h"
#include <vector>
#include <unordered_map>
#include <queue>
namespace ecs {
class EntityManager {
public:
EntityManager() : m_NextEntityID(0) {}
~EntityManager() = default;
// Créer une nouvelle entité
std::shared_ptr<Entity> CreateEntity() {
EntityID id;
// Réutiliser les IDs des entités supprimées si possible
if (!m_FreeIDs.empty()) {
id = m_FreeIDs.front();
m_FreeIDs.pop();
} else {
id = m_NextEntityID++;
}
auto entity = std::make_shared<Entity>(id);
m_Entities[id] = entity;
return entity;
}
// Supprimer une entité
void DestroyEntity(EntityID id) {
auto it = m_Entities.find(id);
if (it != m_Entities.end()) {
m_Entities.erase(it);
m_FreeIDs.push(id); // Recycler l'ID
}
}
// Obtenir une entité par son ID
std::shared_ptr<Entity> GetEntity(EntityID id) {
auto it = m_Entities.find(id);
if (it != m_Entities.end()) {
return it->second;
}
return nullptr;
}
// Mettre à jour toutes les entités
void UpdateEntities(float deltaTime) {
for (auto& [id, entity] : m_Entities) {
entity->UpdateComponents(deltaTime);
}
}
// Obtenir toutes les entités qui ont un composant spécifique
template<typename T>
std::vector<std::shared_ptr<Entity>> GetEntitiesWithComponent() {
static_assert(std::is_base_of<Component, T>::value, "T must derive from Component");
std::vector<std::shared_ptr<Entity>> result;
for (auto& [id, entity] : m_Entities) {
if (entity->HasComponent<T>()) {
result.push_back(entity);
}
}
return result;
}
// Obtenir le nombre d'entités
size_t GetEntityCount() const {
return m_Entities.size();
}
// Vider toutes les entités
void Clear() {
m_Entities.clear();
// Vider la file des IDs libres
std::queue<EntityID> empty;
std::swap(m_FreeIDs, empty);
m_NextEntityID = 0;
}
private:
EntityID m_NextEntityID;
std::unordered_map<EntityID, std::shared_ptr<Entity>> m_Entities;
std::queue<EntityID> m_FreeIDs; // IDs à réutiliser
};
} // namespace ecs

View File

@ -0,0 +1,222 @@
#pragma once
#include "../entity_manager.h"
#include "../components/render_component.h"
#include "../components/transform_component.h"
#include "../components/shader_component.h"
#include "shader_manager_class.h"
#include <DirectXMath.h>
namespace ecs {
class RenderSystem {
public:
RenderSystem(ID3D11DeviceContext* deviceContext, shader_manager_class* shaderManager)
: m_deviceContext(deviceContext), m_shaderManager(shaderManager) {}
// Rendu d'une entité spécifique
bool RenderEntity(std::shared_ptr<Entity> entity,
const DirectX::XMMATRIX& viewMatrix,
const DirectX::XMMATRIX& projectionMatrix,
const DirectX::XMFLOAT4* diffuseColors,
const DirectX::XMFLOAT4* lightPositions,
const DirectX::XMFLOAT4* ambientColors,
const DirectX::XMFLOAT3& cameraPosition,
const DirectX::XMFLOAT4& sunlightDiffuse,
const DirectX::XMFLOAT4& sunlightAmbient,
const DirectX::XMFLOAT3& sunlightDirection,
float sunlightIntensity) {
// Vérifier si l'entité a tous les composants nécessaires
auto transform = entity->GetComponent<TransformComponent>();
auto render = entity->GetComponent<RenderComponent>();
auto shader = entity->GetComponent<ShaderComponent>();
if (!transform || !render || !shader || !render->GetModel())
return false;
// Calculer la matrice monde
XMMATRIX scaleMatrix = transform->GetScaleMatrix();
XMMATRIX rotateMatrix = transform->GetRotateMatrix();
XMMATRIX translateMatrix = transform->GetTranslateMatrix();
XMMATRIX worldMatrix = XMMatrixMultiply(
XMMatrixMultiply(scaleMatrix, rotateMatrix),
translateMatrix
);
// Rendre le modèle
render->Render(m_deviceContext);
// Sélectionner le shader approprié
switch (shader->GetActiveShader()) {
case ShaderType::ALPHA_MAPPING:
return m_shaderManager->render_alpha_map_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
render->GetTexture(TextureType::Diffuse, 1),
render->GetTexture(TextureType::Alpha, 0)
);
case ShaderType::CEL_SHADING:
return m_shaderManager->render_cel_shading_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
sunlightDiffuse,
sunlightAmbient,
sunlightDirection,
sunlightIntensity
);
case ShaderType::NORMAL_MAPPING:
return m_shaderManager->render_normal_map_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
render->GetTexture(TextureType::Normal, 0),
sunlightDirection,
sunlightDiffuse
);
case ShaderType::SPECULAR_MAPPING:
return m_shaderManager->render_spec_map_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
render->GetTexture(TextureType::Normal, 0),
render->GetTexture(TextureType::Specular, 0),
sunlightDirection,
sunlightDiffuse,
cameraPosition,
sunlightDiffuse, // Couleur speculaire (à ajuster)
16.0f // Puissance speculaire (à ajuster)
);
case ShaderType::LIGHTING:
{
// Créer des copies locales non constantes des tableaux
DirectX::XMFLOAT4 localDiffuseColors[4];
DirectX::XMFLOAT4 localLightPositions[4];
DirectX::XMFLOAT4 localAmbientColors[4];
// Copier les données
for (int i = 0; i < 4; i++) {
localDiffuseColors[i] = diffuseColors[i];
localLightPositions[i] = lightPositions[i];
localAmbientColors[i] = ambientColors[i];
}
return m_shaderManager->renderlight_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
localDiffuseColors,
localLightPositions,
localAmbientColors
);
}
case ShaderType::SUNLIGHT:
return m_shaderManager->render_sunlight_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
sunlightDiffuse,
sunlightAmbient,
sunlightDirection,
sunlightIntensity
);
case ShaderType::SKYBOX:
return m_shaderManager->render_skybox_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0),
sunlightDiffuse,
sunlightAmbient,
sunlightDirection,
sunlightIntensity
);
case ShaderType::TEXTURE:
default:
return m_shaderManager->render_texture_shader(
m_deviceContext,
render->GetIndexCount(),
worldMatrix,
viewMatrix,
projectionMatrix,
render->GetTexture(TextureType::Diffuse, 0)
);
}
}
// Rendu de toutes les entités avec les composants nécessaires
int RenderAllEntities(EntityManager* entityManager,
const DirectX::XMMATRIX& viewMatrix,
const DirectX::XMMATRIX& projectionMatrix,
const DirectX::XMFLOAT4* diffuseColors,
const DirectX::XMFLOAT4* lightPositions,
const DirectX::XMFLOAT4* ambientColors,
const DirectX::XMFLOAT3& cameraPos,
const DirectX::XMFLOAT4& sunlightDiffuse,
const DirectX::XMFLOAT4& sunlightAmbient,
const DirectX::XMFLOAT3& sunlightDirection,
float sunlightIntensity) {
int renderCount = 0;
// Récupérer toutes les entités qui ont les composants RenderComponent et TransformComponent
auto entities = entityManager->GetEntitiesWithComponent<RenderComponent>();
for (auto& entity : entities) {
auto render = entity->GetComponent<RenderComponent>();
// Vérifier si l'entité a un TransformComponent
auto transform = entity->GetComponent<TransformComponent>();
if (!transform) continue;
// Vérifier si le modèle est visible
if (!render->IsVisible()) continue;
// Effectuer le rendu
if (RenderEntity(entity, viewMatrix, projectionMatrix,
diffuseColors, lightPositions, ambientColors,cameraPos,
sunlightDiffuse, sunlightAmbient, sunlightDirection,
sunlightIntensity)) {
renderCount++;
}
}
return renderCount;
}
private:
ID3D11DeviceContext* m_deviceContext;
shader_manager_class* m_shaderManager;
};
} // namespace ecs

View File

@ -91,6 +91,9 @@ bool application_class::initialize(int screenWidth, int screenHeight, HWND hwnd,
render_queues_.push_back(std::ref(cubes_));
render_queues_.push_back(std::ref(terrain_chunk_));
// create entity manager
entity_manager_ = std::make_unique<ecs::EntityManager>();
screen_width_ = screenWidth;
screen_height_ = screenHeight;
@ -1725,210 +1728,48 @@ void application_class::culling_thread_function()
bool application_class::render_pass(const std::vector<std::reference_wrapper<std::vector<object*>>>& RenderQueues, XMFLOAT4* diffuse, XMFLOAT4* position, XMFLOAT4* ambient, XMMATRIX view, XMMATRIX projection)
{
std::lock_guard<std::mutex> lock(objects_mutex_);
XMMATRIX scaleMatrix, rotateMatrix, translateMatrix ;
XMMATRIX scaleMatrix, rotateMatrix, translateMatrix;
bool result;
int renderCount = 0;
int i;
if (RenderQueues.empty())
// render skybox
for (auto& skyboxObject : skybox_)
{
Logger::Get().Log("RenderQueues is empty", __FILE__, __LINE__, Logger::LogLevel::Error);
if (skyboxObject == nullptr)
{
Logger::Get().Log("skyboxObject is null", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// if (active_camera_ == sun_camera_)
// {
// shadow_map_->set_render_target(direct_3d_->get_device_context());
// shadow_map_->clear_render_target(direct_3d_->get_device_context());
// }
for (const auto& RenderQueue : RenderQueues)
{
// Désactiver le Z-buffer si la RenderQueue est skybox_
bool isSkybox = (&RenderQueue.get() == &skybox_);
if (isSkybox)
{
direct_3d_->turn_z_buffer_off();
}
for (auto& object : RenderQueue.get())
{
if (object == nullptr)
{
Logger::Get().Log("object is null", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Check if the object has physics enabled
if (object->IsPhysicsEnabled())
{
object->UpdatePosition(timer_->GetTime());
}
if (!object->IsVisible())
if (!skyboxObject->IsVisible())
{
continue;
}
renderCount++;
direct_3d_->turn_z_buffer_off();
scaleMatrix = object->GetScaleMatrix();
rotateMatrix = object->GetRotateMatrix();
translateMatrix = object->GetTranslateMatrix();
scaleMatrix = skyboxObject->GetScaleMatrix();
rotateMatrix = skyboxObject->GetRotateMatrix();
translateMatrix = skyboxObject->GetTranslateMatrix();
XMMATRIX worldMatrix = XMMatrixMultiply(
XMMatrixMultiply(scaleMatrix, rotateMatrix),
translateMatrix
);
object->get_model()->Render(direct_3d_->get_device_context());
renderCount++;
if (active_camera_ == sun_camera_)
{
result = shader_manager_->render_depth_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0)
);
}
skyboxObject->get_model()->Render(direct_3d_->get_device_context());
// Utiliser l'enum ShaderType pour déterminer quel shader utiliser
switch (object->GetActiveShader())
{
case ShaderType::ALPHA_MAPPING:
// Enable alpha blending for transparency.
direct_3d_->enable_alpha_blending();
result = shader_manager_->render_alpha_map_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
object->get_model()->GetTexture(TextureType::Diffuse,1),
object->get_model()->GetTexture(TextureType::Alpha,0)
);
if (!result)
{
Logger::Get().Log("Could not render the model using the alpha map shader", __FILE__, __LINE__, Logger::LogLevel::Error);
direct_3d_->disable_alpha_blending();
return false;
}
direct_3d_->disable_alpha_blending();
break;
case ShaderType::CEL_SHADING:
result = shader_manager_->render_cel_shading_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
sun_light_->GetDiffuseColor(),
sun_light_->GetAmbientColor(),
sun_light_->GetDirection(),
sun_light_->GetIntensity()
);
if (!result)
{
Logger::Get().Log("Could not render the model using the cel shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
case ShaderType::NORMAL_MAPPING:
result = shader_manager_->render_normal_map_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
object->get_model()->GetTexture(TextureType::Normal,0),
lights_[0]->GetDirection(),
lights_[0]->GetDiffuseColor()
);
if (!result)
{
Logger::Get().Log("Could not render the model using the normal map shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
case ShaderType::SPECULAR_MAPPING:
result = shader_manager_->render_spec_map_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
object->get_model()->GetTexture(TextureType::Normal,0),
object->get_model()->GetTexture(TextureType::Specular,0),
lights_[0]->GetDirection(),
lights_[0]->GetDiffuseColor(),
camera_->get_position(),
lights_[0]->GetSpecularColor(),
lights_[0]->GetSpecularPower()
);
if (!result)
{
Logger::Get().Log("Could not render the model using the specular map shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
case ShaderType::TEXTURE:
result = shader_manager_->render_texture_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0)
);
if (!result)
{
Logger::Get().Log("Could not render the model using the texture shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
case ShaderType::LIGHTING:
result = shader_manager_->renderlight_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
diffuse,
position,
ambient
);
if (!result)
{
Logger::Get().Log("Could not render the object model using the light shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
case ShaderType::SKYBOX:
result = shader_manager_->render_skybox_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
skyboxObject->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
skyboxObject->get_model()->GetTexture(TextureType::Diffuse,0),
sun_light_->GetDiffuseColor(),
sun_light_->GetAmbientColor(),
sun_light_->GetDirection(),
@ -1939,56 +1780,47 @@ bool application_class::render_pass(const std::vector<std::reference_wrapper<std
Logger::Get().Log("Could not render the object model using the skybox shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
direct_3d_->turn_z_buffer_on(); // Réactiver le Z-buffer après le rendu de la skybox
break;
case ShaderType::SUNLIGHT:
result = shader_manager_->render_sunlight_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
sun_light_->GetDiffuseColor(),
sun_light_->GetAmbientColor(),
sun_light_->GetDirection(),
sun_light_->GetIntensity()
//shadow_map_srv_
);
if (!result)
{
Logger::Get().Log("Could not render the object model using the sunlight shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
default:
result = shader_manager_->renderlight_shader(
direct_3d_->get_device_context(),
object->get_model()->GetIndexCount(),
worldMatrix,
// Rendu des entités du système ECS s'il est disponible
if (entity_manager_) {
// Créer le système de rendu pour les entités
ecs::RenderSystem renderSystem(direct_3d_->get_device_context(), shader_manager_);
// Données pour le système de rendu
XMFLOAT4 sunlightDiffuse = sun_light_->GetDiffuseColor();
XMFLOAT4 sunlightAmbient = sun_light_->GetAmbientColor();
XMFLOAT3 sunlightDirection = sun_light_->GetDirection();
float sunlightIntensity = sun_light_->GetIntensity();
// Effectuer le rendu de toutes les entités
int entitiesRendered = renderSystem.RenderAllEntities(
entity_manager_.get(),
view,
projection,
object->get_model()->GetTexture(TextureType::Diffuse,0),
diffuse,
position,
ambient
ambient,
camera_->get_position(),
sunlightDiffuse,
sunlightAmbient,
sunlightDirection,
sunlightIntensity
);
if (!result)
{
Logger::Get().Log("Could not render the object model using the light shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
break;
renderCount += entitiesRendered;
}
stats_->increment_draw_call_count();
}
if (isSkybox)
{
direct_3d_->turn_z_buffer_on();
}
}
// Rendu des objets traditionnels comme avant
// if (active_camera_ == sun_camera_)
// {
// shadow_map_->set_render_target(direct_3d_->get_device_context());
// shadow_map_->clear_render_target(direct_3d_->get_device_context());
// }
// if (active_camera_ == sun_camera_)
// {
@ -2161,26 +1993,54 @@ bool application_class::create_big_cube(int side_count)
sharedModel = newModel;
}
// Créer temporairement les cubes dans un vecteur local
// Version ECS - Créer les entités pour le cube
if (entity_manager_) {
for (int x = 0; x < side_count; x++) {
for (int y = 0; y < side_count; y++) {
for (int z = 0; z < side_count; z++) {
// Créer une entité
auto entity = entity_manager_->CreateEntity();
// Ajouter un composant d'identité
auto identity = entity->AddComponent<ecs::IdentityComponent>(object_id_++);
identity->SetName("CubePart_" + std::to_string(x) + "_" + std::to_string(y) + "_" + std::to_string(z));
identity->SetType(ecs::ObjectType::Cube);
// Ajouter un composant de transformation
auto transform = entity->AddComponent<ecs::TransformComponent>();
transform->SetPosition(XMVectorSet(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), 0.0f));
transform->SetScale(XMVectorSet(1.0f, 1.0f, 1.0f, 0.0f));
transform->UpdateWorldMatrix();
// Ajouter un composant de rendu
auto render = entity->AddComponent<ecs::RenderComponent>();
render->InitializeWithModel(sharedModel);
// Ajouter un composant de shader
auto shader = entity->AddComponent<ecs::ShaderComponent>();
shader->SetActiveShader(ecs::ShaderType::LIGHTING);
}
}
}
} else {
// Ancien système - Créer temporairement les cubes dans un vecteur local
std::vector<object*> tempCubes;
tempCubes.reserve(side_count * side_count * side_count);
// Générer side_count³ cubes
for (int x = 0; x < side_count; x++)
{
for (int y = 0; y < side_count; y++)
{
for (int z = 0; z < side_count; z++)
{
for (int x = 0; x < side_count; x++) {
for (int y = 0; y < side_count; y++) {
for (int z = 0; z < side_count; z++) {
object* cubePart = new object(*this);
cubePart->SetModel(sharedModel);
cubePart->SetTranslateMatrix(XMMatrixTranslation(static_cast<float>(x),static_cast<float>(y),static_cast<float>(z)));
cubePart->SetTranslateMatrix(XMMatrixTranslation(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)));
tempCubes.push_back(cubePart);
}
}
}
// Transférer les cubes du vecteur temporaire au vecteur membre
cubes_ = std::move(tempCubes);
}
update_stats_after_modification();