Minor - ECS implementation pt.2 - V12.3.0

This commit is contained in:
CatChow0 2025-06-24 16:25:03 +02:00
parent bf1b5d78e5
commit 8f0e583c62
3 changed files with 47 additions and 104 deletions

View File

@ -175,7 +175,7 @@ public:
private:
bool render(float, float, float, float, float);
bool render_physics(bool key_left, bool key_right, bool key_up, bool key_down, float delta_time);
bool render_physics(float delta_time);
bool update_mouse_strings(int, int, bool);
bool update_fps();
bool update_render_count_string(int);

View File

@ -54,6 +54,18 @@ public:
}
}
// Obtenir toutes les entités
std::vector<std::shared_ptr<Entity>> GetAllEntities() {
std::vector<std::shared_ptr<Entity>> result;
result.reserve(m_Entities.size());
for (const auto& [id, entity] : m_Entities) {
result.push_back(entity);
}
return result;
}
// Obtenir toutes les entités qui ont un composant spécifique
template<typename T>
std::vector<std::shared_ptr<Entity>> GetEntitiesWithComponent() {

View File

@ -1791,36 +1791,34 @@ void application_class::culling_thread_function()
}
// Traitement des files d'objets normaux (sans la skybox)
std::vector<std::reference_wrapper<std::vector<object*>>> queues = {
std::ref(object_), std::ref(cubes_), std::ref(terrain_chunk_)
};
auto all_entity = entity_manager_->GetAllEntities();
for (auto& queueRef : queues)
{
std::vector<object*>& queue = queueRef.get();
for (auto& entity : all_entity)
{
std::lock_guard<std::mutex> lock(objects_mutex_);
auto renderComponent = entity->GetComponent<ecs::RenderComponent>();
if (renderComponent && renderComponent->GetModel())
{
// Extraction des données de position via le composant TransformComponent
auto transformComponent = entity->GetComponent<ecs::TransformComponent>();
if (transformComponent)
{
XMVECTOR transformPosition = transformComponent->GetPosition();
float x = XMVectorGetX(transformPosition);
float y = XMVectorGetY(transformPosition);
float z = XMVectorGetZ(transformPosition);
std::lock_guard<std::mutex> lock(objects_mutex_);
// Calcul du rayon approximatif
XMVECTOR scale = transformComponent->GetScale();
float radius = max(max(XMVectorGetX(scale), XMVectorGetY(scale)), XMVectorGetZ(scale));
for (auto* object : queue)
{
if (!object) continue;
// verification du frustum
bool visible = frustum_culling_.CheckCube(x, y, z, radius, get_frustum_tolerance());
renderComponent->SetVisible(visible);
}
// Extraction des données de position
XMVECTOR position = object->GetPosition();
float x = XMVectorGetX(position);
float y = XMVectorGetY(position);
float z = XMVectorGetZ(position);
// Calcul du rayon approximatif
XMVECTOR scale = object->GetScale();
float radius = max(max(XMVectorGetX(scale), XMVectorGetY(scale)), XMVectorGetZ(scale));
// Vérification du frustum
bool visible = frustum_culling_.CheckCube(x, y, z, radius, get_frustum_tolerance());
object->SetVisible(visible);
}
}
}
}
// Pause pour éviter de surcharger le CPU
std::this_thread::sleep_for(std::chrono::milliseconds(16)); // ~60 Hz
@ -1962,83 +1960,16 @@ void application_class::update_skybox_position()
}
bool application_class::render_physics(bool key_left, bool key_right, bool key_up, bool key_down, float delta_time) {
const float maxSpeed = 50.0f; // Limite de vitesse maximale
bool application_class::render_physics(float delta_time) {
for (auto& object : object_) {
if (object == nullptr) {
Logger::Get().Log("object is null", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
// update the physical entity if they have the physics component
auto entities_with_physics = entity_manager_->GetEntitiesWithComponent<ecs::PhysicsComponent>();
for (auto& entity : entities_with_physics) {
auto physicsComponent = entity->GetComponent<ecs::PhysicsComponent>();
if (physicsComponent) {
// Update the physics component with the input keys and delta time
physicsComponent->Update(delta_time);
}
if (!object->IsPhysicsEnabled()) {
continue;
}
// Reset acceleration for the new frame
object->SetAcceleration(XMVectorZero());
object->SetGrounded(false);
for (auto& chunk : terrain_chunk_) {
if (!physics_->IsColliding(object, chunk)) {
continue;
}
object->SetVelocity(XMVectorSetY(object->GetVelocity(), 0.0f));
object->SetAcceleration(XMVectorSetY(object->GetAcceleration(), 0.0f));
object->SetGrounded(true);
}
for (auto& object2 : object_) {
if (object->GetId() == object2->GetId()) {
continue;
}
if (!physics_->IsColliding(object, object2)) {
continue;
}
object->SetVelocity(XMVectorZero());
object->SetAcceleration(XMVectorZero());
}
float forceX = 0, forceY = 0, forceZ = 0, forceW = 0;
if (key_left) {
forceX = -40.0f;
}
if (key_right) {
forceX = 40.0f;
}
if (key_up) {
forceY = 40.0f;
}
if (key_down && !object->IsGrounded()) {
forceY = -40.0f;
}
XMVECTOR force = XMVectorSet(forceX, forceY, forceZ, forceW);
physics_->AddForce(object, force);
object->AddVelocity(delta_time);
XMVECTOR velocity = object->GetVelocity();
float speed = XMVectorGetX(XMVector3Length(velocity));
if (speed > maxSpeed) {
velocity = XMVectorScale(velocity, maxSpeed / speed);
object->SetVelocity(velocity);
}
if (object->m_gravityEnabled) {
physics_->ApplyGravity(object, delta_time);
}
if (XMVectorGetY(object->GetPosition()) < -30.0f) {
XMVECTOR currentPosition = object->GetPosition();
object->SetPosition(XMVectorSetY(currentPosition, 50.0f));
}
object->m_previousPosition = object->GetPosition();
}
return true;
@ -2057,7 +1988,7 @@ void application_class::physics_thread_function()
lastTime = now;
float deltaTime = 1.0f / static_cast<float>(physics_tick_rate_);
bool result = render_physics(inputs_.key_left, inputs_.key_right, inputs_.key_up, inputs_.key_down, deltaTime);
bool result = render_physics(deltaTime);
if (!result)
{
Logger::Get().Log("Could not render the physics scene", __FILE__, __LINE__, Logger::LogLevel::Error);