Merge branch 'Sprites'

This commit is contained in:
StratiX0 2024-03-27 12:01:07 +01:00
commit a39859b251
40 changed files with 2819 additions and 357 deletions

57
enginecustom/Light.ps Normal file
View File

@ -0,0 +1,57 @@
////////////////////////////////////////////////////////////////////////////////
// Filename: light.ps
////////////////////////////////////////////////////////////////////////////////
/////////////
// GLOBALS //
/////////////
Texture2D shaderTexture : register(t0);
SamplerState SampleType : register(s0);
cbuffer LightBuffer
{
float4 diffuseColor;
float3 lightDirection;
float padding;
};
//////////////
// TYPEDEFS //
//////////////
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
};
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 LightPixelShader(PixelInputType input) : SV_TARGET
{
float4 textureColor;
float3 lightDir;
float lightIntensity;
float4 color;
// Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = shaderTexture.Sample(SampleType, input.tex);
// Invert the light direction for calculations.
lightDir = -lightDirection;
// Calculate the amount of light on this pixel.
lightIntensity = saturate(dot(input.normal, lightDir));
// Determine the final amount of diffuse color based on the diffuse color combined with the light intensity.
color = saturate(diffuseColor * lightIntensity);
// Multiply the texture pixel and the final diffuse color to get the final pixel color result.
color = color * textureColor;
return color;
}

60
enginecustom/Light.vs Normal file
View File

@ -0,0 +1,60 @@
////////////////////////////////////////////////////////////////////////////////
// Filename: light.vs
////////////////////////////////////////////////////////////////////////////////
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType LightVertexShader(VertexInputType input)
{
PixelInputType output;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
// Calculate the normal vector against the world matrix only.
output.normal = mul(input.normal, (float3x3)worldMatrix);
// Normalize the normal vector.
output.normal = normalize(output.normal);
return output;
}

View File

@ -0,0 +1,45 @@
////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightclass.h"
LightClass::LightClass()
{
}
LightClass::LightClass(const LightClass& other)
{
}
LightClass::~LightClass()
{
}
void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha)
{
m_diffuseColor = XMFLOAT4(red, green, blue, alpha);
return;
}
void LightClass::SetDirection(float x, float y, float z)
{
m_direction = XMFLOAT3(x, y, z);
return;
}
XMFLOAT4 LightClass::GetDiffuseColor()
{
return m_diffuseColor;
}
XMFLOAT3 LightClass::GetDirection()
{
return m_direction;
}

37
enginecustom/Lightclass.h Normal file
View File

@ -0,0 +1,37 @@
#pragma once
////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTCLASS_H_
#define _LIGHTCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <directxmath.h>
using namespace DirectX;
////////////////////////////////////////////////////////////////////////////////
// Class name: LightClass
////////////////////////////////////////////////////////////////////////////////
class LightClass
{
public:
LightClass();
LightClass(const LightClass&);
~LightClass();
void SetDirection(float, float, float);
void SetDiffuseColor(float, float, float, float);
XMFLOAT3 GetDirection();
XMFLOAT4 GetDiffuseColor();
private:
XMFLOAT4 m_diffuseColor;
XMFLOAT3 m_direction;
};
#endif

View File

@ -0,0 +1,428 @@
////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightshaderclass.h"
LightShaderClass::LightShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_lightBuffer = 0;
}
LightShaderClass::LightShaderClass(const LightShaderClass& other)
{
}
LightShaderClass::~LightShaderClass()
{
}
bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
bool result;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"./Light.vs");
if (error != 0)
{
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"./Light.ps");
if (error != 0)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
return true;
}
void LightShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, diffuseColor);
if (!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_BUFFER_DESC lightBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(),
&m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
return false;
}
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Setup the description of the light dynamic constant buffer that is in the pixel shader.
// Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail.
lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightBufferDesc.ByteWidth = sizeof(LightBufferType);
lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightBufferDesc.MiscFlags = 0;
lightBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer);
if (FAILED(result))
{
return false;
}
return true;
}
void LightShaderClass::ShutdownShader()
{
// Release the light constant buffer.
if (m_lightBuffer)
{
m_lightBuffer->Release();
m_lightBuffer = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned __int64 bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
unsigned int bufferNumber;
MatrixBufferType* dataPtr;
LightBufferType* dataPtr2;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Now set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
// Lock the light constant buffer so it can be written to.
result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr2 = (LightBufferType*)mappedResource.pData;
// Copy the lighting variables into the constant buffer.
dataPtr2->diffuseColor = diffuseColor;
dataPtr2->lightDirection = lightDirection;
dataPtr2->padding = 0.0f;
// Unlock the constant buffer.
deviceContext->Unmap(m_lightBuffer, 0);
// Set the position of the light constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the light constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer);
return true;
}
void LightShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}

View File

@ -0,0 +1,65 @@
////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTSHADERCLASS_H_
#define _LIGHTSHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <d3d11.h>
#include <d3dcompiler.h>
#include <directxmath.h>
#include <fstream>
using namespace DirectX;
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Class name: LightShaderClass
////////////////////////////////////////////////////////////////////////////////
class LightShaderClass
{
private:
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
struct LightBufferType
{
XMFLOAT4 diffuseColor;
XMFLOAT3 lightDirection;
float padding; // Added extra padding so structure is a multiple of 16 for CreateBuffer function requirements.
};
public:
LightShaderClass();
LightShaderClass(const LightShaderClass&);
~LightShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_matrixBuffer;
ID3D11Buffer* m_lightBuffer;
};
#endif

View File

@ -0,0 +1,421 @@
#include "spriteclass.h"
SpriteClass::SpriteClass()
{
m_vertexBuffer = 0;
m_indexBuffer = 0;
m_Textures = 0;
}
SpriteClass::SpriteClass(const SpriteClass& other)
{
}
SpriteClass::~SpriteClass()
{
}
bool SpriteClass::Initialize(ID3D11Device* device, ID3D11DeviceContext* deviceContext, int screenWidth, int screenHeight, char* spriteFilename, int renderX, int renderY)
{
bool result;
// Store the screen size.
m_screenWidth = screenWidth;
m_screenHeight = screenHeight;
// Store where the sprite should be rendered to.
m_renderX = renderX;
m_renderY = renderY;
// Initialize the frame time for this sprite object.
m_frameTime = 0;
// Initialize the vertex and index buffer that hold the geometry for the sprite bitmap.
result = InitializeBuffers(device);
if (!result)
{
return false;
}
// Load the textures for this sprite.
result = LoadTextures(device, deviceContext, spriteFilename);
if (!result)
{
return false;
}
return true;
}
void SpriteClass::Shutdown()
{
// Release the textures used for this sprite.
ReleaseTextures();
// Release the vertex and index buffers.
ShutdownBuffers();
return;
}
bool SpriteClass::Render(ID3D11DeviceContext* deviceContext)
{
bool result;
// Update the buffers if the position of the sprite has changed from its original position.
result = UpdateBuffers(deviceContext);
if (!result)
{
return false;
}
// Put the vertex and index buffers on the graphics pipeline to prepare them for drawing.
RenderBuffers(deviceContext);
return true;
}
void SpriteClass::Update(float frameTime)
{
// Increment the frame time each frame.
m_frameTime += frameTime;
// Check if the frame time has reached the cycle time.
if (m_frameTime >= m_cycleTime)
{
// If it has then reset the frame time and cycle to the next sprite in the texture array.
m_frameTime -= m_cycleTime;
m_currentTexture++;
// If we are at the last sprite texture then go back to the beginning of the texture array to the first texture again.
if (m_currentTexture == m_textureCount)
{
m_currentTexture = 0;
}
}
return;
}
int SpriteClass::GetIndexCount()
{
return m_indexCount;
}
ID3D11ShaderResourceView* SpriteClass::GetTexture()
{
return m_Textures[m_currentTexture].GetTexture();
}
bool SpriteClass::InitializeBuffers(ID3D11Device* device)
{
VertexType* vertices;
unsigned long* indices;
D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
D3D11_SUBRESOURCE_DATA vertexData, indexData;
HRESULT result;
int i;
// Initialize the previous rendering position to negative one.
m_prevPosX = -1;
m_prevPosY = -1;
// Set the number of vertices in the vertex array.
m_vertexCount = 6;
// Set the number of indices in the index array.
m_indexCount = m_vertexCount;
// Create the vertex array.
vertices = new VertexType[m_vertexCount];
// Create the index array.
indices = new unsigned long[m_indexCount];
// Initialize vertex array to zeros at first.
memset(vertices, 0, (sizeof(VertexType) * m_vertexCount));
// Load the index array with data.
for (i = 0; i < m_indexCount; i++)
{
indices[i] = i;
}
// Set up the description of the dynamic vertex buffer.
vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount;
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
vertexBufferDesc.MiscFlags = 0;
vertexBufferDesc.StructureByteStride = 0;
// Give the subresource structure a pointer to the vertex data.
vertexData.pSysMem = vertices;
vertexData.SysMemPitch = 0;
vertexData.SysMemSlicePitch = 0;
// Now finally create the vertex buffer.
result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer);
if (FAILED(result))
{
return false;
}
// Set up the description of the index buffer.
indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount;
indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
indexBufferDesc.CPUAccessFlags = 0;
indexBufferDesc.MiscFlags = 0;
indexBufferDesc.StructureByteStride = 0;
// Give the subresource structure a pointer to the index data.
indexData.pSysMem = indices;
indexData.SysMemPitch = 0;
indexData.SysMemSlicePitch = 0;
// Create the index buffer.
result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer);
if (FAILED(result))
{
return false;
}
// Release the arrays now that the vertex and index buffers have been created and loaded.
delete[] vertices;
vertices = 0;
delete[] indices;
indices = 0;
return true;
}
void SpriteClass::ShutdownBuffers()
{
// Release the index buffer.
if (m_indexBuffer)
{
m_indexBuffer->Release();
m_indexBuffer = 0;
}
// Release the vertex buffer.
if (m_vertexBuffer)
{
m_vertexBuffer->Release();
m_vertexBuffer = 0;
}
return;
}
bool SpriteClass::UpdateBuffers(ID3D11DeviceContext* deviceContent)
{
float left, right, top, bottom;
VertexType* vertices;
D3D11_MAPPED_SUBRESOURCE mappedResource;
VertexType* dataPtr;
HRESULT result;
// If the position we are rendering this bitmap to hasn't changed then don't update the vertex buffer.
if ((m_prevPosX == m_renderX) && (m_prevPosY == m_renderY))
{
return true;
}
// If the rendering location has changed then store the new position and update the vertex buffer.
m_prevPosX = m_renderX;
m_prevPosY = m_renderY;
// Create the vertex array.
vertices = new VertexType[m_vertexCount];
// Calculate the screen coordinates of the left side of the bitmap.
left = (float)((m_screenWidth / 2) * -1) + (float)m_renderX;
// Calculate the screen coordinates of the right side of the bitmap.
right = left + (float)m_bitmapWidth;
// Calculate the screen coordinates of the top of the bitmap.
top = (float)(m_screenHeight / 2) - (float)m_renderY;
// Calculate the screen coordinates of the bottom of the bitmap.
bottom = top - (float)m_bitmapHeight;
// Load the vertex array with data.
// First triangle.
vertices[0].position = XMFLOAT3(left, top, 0.0f); // Top left.
vertices[0].texture = XMFLOAT2(0.0f, 0.0f);
vertices[1].position = XMFLOAT3(right, bottom, 0.0f); // Bottom right.
vertices[1].texture = XMFLOAT2(1.0f, 1.0f);
vertices[2].position = XMFLOAT3(left, bottom, 0.0f); // Bottom left.
vertices[2].texture = XMFLOAT2(0.0f, 1.0f);
// Second triangle.
vertices[3].position = XMFLOAT3(left, top, 0.0f); // Top left.
vertices[3].texture = XMFLOAT2(0.0f, 0.0f);
vertices[4].position = XMFLOAT3(right, top, 0.0f); // Top right.
vertices[4].texture = XMFLOAT2(1.0f, 0.0f);
vertices[5].position = XMFLOAT3(right, bottom, 0.0f); // Bottom right.
vertices[5].texture = XMFLOAT2(1.0f, 1.0f);
// Lock the vertex buffer.
result = deviceContent->Map(m_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (VertexType*)mappedResource.pData;
// Copy the data into the vertex buffer.
memcpy(dataPtr, (void*)vertices, (sizeof(VertexType) * m_vertexCount));
// Unlock the vertex buffer.
deviceContent->Unmap(m_vertexBuffer, 0);
// Release the pointer reference.
dataPtr = 0;
// Release the vertex array as it is no longer needed.
delete[] vertices;
vertices = 0;
return true;
}
void SpriteClass::RenderBuffers(ID3D11DeviceContext* deviceContext)
{
unsigned int stride;
unsigned int offset;
// Set vertex buffer stride and offset.
stride = sizeof(VertexType);
offset = 0;
// Set the vertex buffer to active in the input assembler so it can be rendered.
deviceContext->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset);
// Set the index buffer to active in the input assembler so it can be rendered.
deviceContext->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0);
// Set the type of primitive that should be rendered from this vertex buffer, in this case triangles.
deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
return;
}
bool SpriteClass::LoadTextures(ID3D11Device* device, ID3D11DeviceContext* deviceContext, char* filename)
{
char textureFilename[128];
std::ifstream fin;
int i, j;
char input;
bool result;
// Open the sprite info data file.
fin.open(filename);
if (fin.fail())
{
return false;
}
// Read in the number of textures.
fin >> m_textureCount;
// Create and initialize the texture array with the texture count from the file.
m_Textures = new TextureClass[m_textureCount];
// Read to start of next line.
fin.get(input);
// Read in each texture file name.
for (i = 0; i < m_textureCount; i++)
{
j = 0;
fin.get(input);
while (input != '\n')
{
textureFilename[j] = input;
j++;
fin.get(input);
}
textureFilename[j] = '\0';
// Once you have the filename then load the texture in the texture array.
result = m_Textures[i].Initialize(device, deviceContext, textureFilename);
if (!result)
{
return false;
}
}
// Read in the cycle time.
fin >> m_cycleTime;
// Convert the integer milliseconds to float representation.
m_cycleTime = m_cycleTime * 0.001f;
// Close the file.
fin.close();
// Get the dimensions of the first texture and use that as the dimensions of the 2D sprite images.
m_bitmapWidth = m_Textures[0].GetWidth();
m_bitmapHeight = m_Textures[0].GetHeight();
// Set the starting texture in the cycle to be the first one in the list.
m_currentTexture = 0;
return true;
}
void SpriteClass::ReleaseTextures()
{
int i;
// Release the texture objects.
if (m_Textures)
{
for (i = 0; i < m_textureCount; i++)
{
m_Textures[i].Shutdown();
}
delete[] m_Textures;
m_Textures = 0;
}
return;
}
void SpriteClass::SetRenderLocation(int x, int y)
{
m_renderX = x;
m_renderY = y;
return;
}

View File

@ -0,0 +1,63 @@
#ifndef _SPRITECLASS_H_
#define _SPRITECLASS_H_
//////////////
// INCLUDES //
//////////////
#include <directxmath.h>
#include <fstream>
using namespace DirectX;
///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "textureclass.h"
////////////////////////////////////////////////////////////////////////////////
// Class name: SpriteClass
////////////////////////////////////////////////////////////////////////////////
class SpriteClass
{
private:
struct VertexType
{
XMFLOAT3 position;
XMFLOAT2 texture;
};
public:
SpriteClass();
SpriteClass(const SpriteClass&);
~SpriteClass();
bool Initialize(ID3D11Device*, ID3D11DeviceContext*, int, int, char*, int, int);
void Shutdown();
bool Render(ID3D11DeviceContext*);
void Update(float);
int GetIndexCount();
ID3D11ShaderResourceView* GetTexture();
void SetRenderLocation(int, int);
private:
bool InitializeBuffers(ID3D11Device*);
void ShutdownBuffers();
bool UpdateBuffers(ID3D11DeviceContext*);
void RenderBuffers(ID3D11DeviceContext*);
bool LoadTextures(ID3D11Device*, ID3D11DeviceContext*, char*);
void ReleaseTextures();
private:
ID3D11Buffer* m_vertexBuffer, * m_indexBuffer;
int m_vertexCount, m_indexCount, m_screenWidth, m_screenHeight, m_bitmapWidth, m_bitmapHeight, m_renderX, m_renderY, m_prevPosX, m_prevPosY;
TextureClass* m_Textures;
float m_frameTime, m_cycleTime;
int m_currentTexture, m_textureCount;
};
#endif

View File

@ -213,9 +213,9 @@ void SystemClass::InitializeWindows(int& screenWidth, int& screenHeight)
}
else
{
// If windowed then set it to 800x600 resolution.
screenWidth = 800;
screenHeight = 600;
// If windowed then set it to 1600x900 resolution.
screenWidth = 1600;
screenHeight = 900;
// Place the window in the middle of the screen.
posX = (GetSystemMetrics(SM_CXSCREEN) - screenWidth) / 2;

View File

@ -0,0 +1,63 @@
#include "timerclass.h"
TimerClass::TimerClass()
{
}
TimerClass::TimerClass(const TimerClass& other)
{
}
TimerClass::~TimerClass()
{
}
bool TimerClass::Initialize()
{
INT64 frequency;
// Get the cycles per second speed for this system.
QueryPerformanceFrequency((LARGE_INTEGER*)&frequency);
if (frequency == 0)
{
return false;
}
// Store it in floating point.
m_frequency = (float)frequency;
// Get the initial start time.
QueryPerformanceCounter((LARGE_INTEGER*)&m_startTime);
return true;
}
void TimerClass::Frame()
{
INT64 currentTime;
INT64 elapsedTicks;
// Query the current time.
QueryPerformanceCounter((LARGE_INTEGER*)&currentTime);
// Calculate the difference in time since the last time we queried for the current time.
elapsedTicks = currentTime - m_startTime;
// Calculate the frame time.
m_frameTime = (float)elapsedTicks / m_frequency;
// Restart the timer.
m_startTime = currentTime;
return;
}
float TimerClass::GetTime()
{
return m_frameTime;
}

32
enginecustom/Timerclass.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef _TIMERCLASS_H_
#define _TIMERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <windows.h>
////////////////////////////////////////////////////////////////////////////////
// Class name: TimerClass
////////////////////////////////////////////////////////////////////////////////
class TimerClass
{
public:
TimerClass();
TimerClass(const TimerClass&);
~TimerClass();
bool Initialize();
void Frame();
float GetTime();
private:
float m_frequency;
INT64 m_startTime;
float m_frameTime;
};
#endif

View File

@ -8,6 +8,10 @@ ApplicationClass::ApplicationClass()
m_Model = 0;
m_LightShader = 0;
m_Light = 0;
m_TextureShader = 0;
m_Bitmap = 0;
m_Sprite = 0;
m_Timer = 0;
}
@ -23,7 +27,10 @@ ApplicationClass::~ApplicationClass()
bool ApplicationClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{
char modelFilename[128], textureFilename1[128], textureFilename2[128];
char modelFilename[128];
char textureFilename1[128], textureFilename2[128];
char bitmapFilename[128];
char spriteFilename[128];
bool result;
@ -50,8 +57,51 @@ bool ApplicationClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
}
// Set the initial position of the camera.
m_Camera->SetPosition(0.0f, 0.0f, -5.0f);
m_Camera->SetRotation(0.0f, 0.0f, 10.0f);
m_Camera->SetPosition(0.0f, 0.0f, -10.0f);
m_Camera->SetRotation(0.0f, 0.0f, 0.0f);
// Create and initialize the texture shader object.
m_TextureShader = new TextureShaderClass;
result = m_TextureShader->Initialize(m_Direct3D->GetDevice(), hwnd);
if (!result)
{
MessageBox(hwnd, L"Could not initialize the texture shader object.", L"Error", MB_OK);
return false;
}
// Set the sprite info file we will be using.
strcpy_s(spriteFilename, "sprite_data_01.txt");
// Create and initialize the sprite object.
m_Sprite = new SpriteClass;
result = m_Sprite->Initialize(m_Direct3D->GetDevice(), m_Direct3D->GetDeviceContext(), screenWidth, screenHeight, spriteFilename, 50, 50);
if (!result)
{
return false;
}
// Create and initialize the timer object.
m_Timer = new TimerClass;
result = m_Timer->Initialize();
if (!result)
{
return false;
}
// Set the file name of the bitmap file.
strcpy_s(bitmapFilename, "stone01.tga");
// Create and initialize the bitmap object.
m_Bitmap = new BitmapClass;
result = m_Bitmap->Initialize(m_Direct3D->GetDevice(), m_Direct3D->GetDeviceContext(), screenWidth, screenHeight, bitmapFilename, 50, 50);
if (!result)
{
return false;
}
// Create and initialize the multitexture shader object.
m_MultiTextureShader = new MultiTextureShaderClass;
@ -90,6 +140,7 @@ bool ApplicationClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
MessageBox(hwnd, L"Could not initialize the light shader object.", L"Error", MB_OK);
return false;
}
// Create and initialize the light object.
m_Light = new LightClass;
@ -103,6 +154,21 @@ bool ApplicationClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
void ApplicationClass::Shutdown()
{
// Release the timer object.
if (m_Timer)
{
delete m_Timer;
m_Timer = 0;
}
// Release the sprite object.
if (m_Sprite)
{
m_Sprite->Shutdown();
delete m_Sprite;
m_Sprite = 0;
}
// Release the light object.
if (m_Light)
{
@ -118,6 +184,14 @@ void ApplicationClass::Shutdown()
m_LightShader = 0;
}
// Release the light shader object.
if (m_LightShader)
{
m_LightShader->Shutdown();
delete m_LightShader;
m_LightShader = 0;
}
// Release the model object.
if (m_Model)
{
@ -132,33 +206,51 @@ void ApplicationClass::Shutdown()
m_MultiTextureShader->Shutdown();
delete m_MultiTextureShader;
m_MultiTextureShader = 0;
}
// Release the bitmap object.
if (m_Bitmap)
{
m_Bitmap->Shutdown();
delete m_Bitmap;
m_Bitmap = 0;
}
// Release the camera object.
if (m_Camera)
{
delete m_Camera;
m_Camera = 0;
}
// Release the texture shader object.
if (m_TextureShader)
{
m_TextureShader->Shutdown();
delete m_TextureShader;
m_TextureShader = 0;
}
// Release the D3D object.
if (m_Direct3D)
{
m_Direct3D->Shutdown();
delete m_Direct3D;
m_Direct3D = 0;
}
// Release the camera object.
if (m_Camera)
{
delete m_Camera;
m_Camera = 0;
}
return;
// Release the D3D object.
if (m_Direct3D)
{
m_Direct3D->Shutdown();
delete m_Direct3D;
m_Direct3D = 0;
}
return;
}
}
bool ApplicationClass::Frame()
{
float frameTime;
static float rotation = 0.0f;
static float x = 2.f;
static float y = 0.f;
static float z = 0.f;
bool result;
// Update the rotation variable each frame.
rotation -= 0.0174532925f * 0.1f;
if (rotation < 0.0f)
@ -166,20 +258,38 @@ bool ApplicationClass::Frame()
rotation += 360.0f;
}
// Update the x position variable each frame.
x -= 0.0174532925f * 0.54672f;
y -= 0.0174532925f * 0.8972f;
// Update the z position variable each frame.
z -= 0.0174532925f * 0.8972f;
// Render the graphics scene.
result = Render(rotation);
result = Render(rotation, x, y, z);
if (!result)
{
return false;
}
// Update the system stats.
m_Timer->Frame();
// Get the current frame time.
frameTime = m_Timer->GetTime();
// Update the sprite object using the frame time.
m_Sprite->Update(frameTime);
return true;
}
bool ApplicationClass::Render(float rotation)
bool ApplicationClass::Render(float rotation, float x, float y, float z)
{
XMMATRIX worldMatrix, viewMatrix, projectionMatrix;
XMMATRIX worldMatrix, viewMatrix, orthoMatrix, projectionMatrix, rotateMatrix, translateMatrix, scaleMatrix, srMatrix;
bool result;
// Clear the buffers to begin the scene.
@ -192,8 +302,54 @@ bool ApplicationClass::Render(float rotation)
m_Direct3D->GetWorldMatrix(worldMatrix);
m_Camera->GetViewMatrix(viewMatrix);
m_Direct3D->GetProjectionMatrix(projectionMatrix);
// Rotate the world matrix by the rotation value so that the triangle will spin.
worldMatrix = XMMatrixRotationY(rotation);
m_Direct3D->GetOrthoMatrix(orthoMatrix);
// Turn off the Z buffer to begin all 2D rendering.
m_Direct3D->TurnZBufferOff();
// Put the sprite vertex and index buffers on the graphics pipeline to prepare them for drawing.
result = m_Sprite->Render(m_Direct3D->GetDeviceContext());
if (!result)
{
return false;
}
// Render the sprite with the texture shader.
result = m_TextureShader->Render(m_Direct3D->GetDeviceContext(), m_Sprite->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, m_Sprite->GetTexture());
if (!result)
{
return false;
}
// Put the bitmap vertex and index buffers on the graphics pipeline to prepare them for drawing.
result = m_Bitmap->Render(m_Direct3D->GetDeviceContext());
if (!result)
{
return false;
}
m_Bitmap->SetRenderLocation(1200, 50);
// Render the bitmap with the texture shader.
result = m_TextureShader->Render(m_Direct3D->GetDeviceContext(), m_Bitmap->GetIndexCount(), worldMatrix, viewMatrix, orthoMatrix, m_Bitmap->GetTexture());
if (!result)
{
return false;
}
// Render the model using the multitexture shader.
result = m_MultiTextureShader->Render(m_Direct3D->GetDeviceContext(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix,
m_Model->GetTexture(0), m_Model->GetTexture(1));
scaleMatrix = XMMatrixScaling(0.5f, 0.5f, 0.5f); // Build the scaling matrix.
rotateMatrix = XMMatrixRotationY(rotation); // Build the rotation matrix.
translateMatrix = XMMatrixTranslation(x, y, z); // Build the translation matrix.
// Multiply the scale, rotation, and translation matrices together to create the final world transformation matrix.
srMatrix = XMMatrixMultiply(scaleMatrix, rotateMatrix);
worldMatrix = XMMatrixMultiply(srMatrix, translateMatrix);
// Render the model using the multitexture shader.
m_Model->Render(m_Direct3D->GetDeviceContext());
@ -206,14 +362,28 @@ bool ApplicationClass::Render(float rotation)
return false;
}
// Render the model using the multitexture shader.
result = m_MultiTextureShader->Render(m_Direct3D->GetDeviceContext(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix,
m_Model->GetTexture(0), m_Model->GetTexture(1));
scaleMatrix = XMMatrixScaling(2.0f, 2.0f, 2.0f); // Build the scaling matrix.
rotateMatrix = XMMatrixRotationY(-rotation); // Build the rotation matrix.
translateMatrix = XMMatrixTranslation(-x, -y, -z); // Build the translation matrix.
// Multiply the scale, rotation, and translation matrices together to create the final world transformation matrix.
srMatrix = XMMatrixMultiply(scaleMatrix, rotateMatrix);
worldMatrix = XMMatrixMultiply(srMatrix, translateMatrix);
// Put the model vertex and index buffers on the graphics pipeline to prepare them for drawing.
m_Model->Render(m_Direct3D->GetDeviceContext());
// Render the model using the light shader.
result = m_LightShader->Render(m_Direct3D->GetDeviceContext(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, m_Model->GetTexture(0),
m_Light->GetDirection(), m_Light->GetAmbientColor(), m_Light->GetDiffuseColor());
if (!result)
{
return false;
}
// Turn the Z buffer back on now that all 2D rendering has completed.
m_Direct3D->TurnZBufferOn();
// Present the rendered scene to the screen.
m_Direct3D->EndScene();

View File

@ -11,7 +11,10 @@
#include "lightshaderclass.h"
#include "lightclass.h"
#include "multitextureshaderclass.h"
#include "modelclass.h"
#include "bitmapclass.h"
#include "textureshaderclass.h"
#include "spriteclass.h"
#include "timerclass.h"
/////////////
// GLOBALS //
@ -37,8 +40,7 @@ public:
bool Frame();
private:
bool Render(float);
bool Render(float, float, float, float);
private:
D3DClass* m_Direct3D;
CameraClass* m_Camera;
@ -46,6 +48,10 @@ private:
LightClass* m_Light;
MultiTextureShaderClass* m_MultiTextureShader;
ModelClass* m_Model;
TextureShaderClass* m_TextureShader;
BitmapClass* m_Bitmap;
SpriteClass* m_Sprite;
TimerClass* m_Timer;
};
#endif

View File

@ -0,0 +1,333 @@
#include "bitmapclass.h"
BitmapClass::BitmapClass()
{
m_vertexBuffer = 0;
m_indexBuffer = 0;
m_Texture = 0;
}
BitmapClass::BitmapClass(const BitmapClass& other)
{
}
BitmapClass::~BitmapClass()
{
}
bool BitmapClass::Initialize(ID3D11Device* device, ID3D11DeviceContext* deviceContext, int screenWidth, int screenHeight, char* textureFilename, int renderX, int renderY)
{
bool result;
// Store the screen size.
m_screenWidth = screenWidth;
m_screenHeight = screenHeight;
// Store where the bitmap should be rendered to.
m_renderX = renderX;
m_renderY = renderY;
// Initialize the vertex and index buffer that hold the geometry for the bitmap quad.
result = InitializeBuffers(device);
if (!result)
{
return false;
}
// Load the texture for this bitmap.
result = LoadTexture(device, deviceContext, textureFilename);
if (!result)
{
return false;
}
return true;
}
void BitmapClass::Shutdown()
{
// Release the bitmap texture.
ReleaseTexture();
// Release the vertex and index buffers.
ShutdownBuffers();
return;
}
bool BitmapClass::Render(ID3D11DeviceContext* deviceContext)
{
bool result;
// Update the buffers if the position of the bitmap has changed from its original position.
result = UpdateBuffers(deviceContext);
if (!result)
{
return false;
}
// Put the vertex and index buffers on the graphics pipeline to prepare them for drawing.
RenderBuffers(deviceContext);
return true;
}
int BitmapClass::GetIndexCount()
{
return m_indexCount;
}
ID3D11ShaderResourceView* BitmapClass::GetTexture()
{
return m_Texture->GetTexture();
}
bool BitmapClass::InitializeBuffers(ID3D11Device* device)
{
VertexType* vertices;
unsigned long* indices;
D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
D3D11_SUBRESOURCE_DATA vertexData, indexData;
HRESULT result;
int i;
// Initialize the previous rendering position to negative one.
m_prevPosX = -1;
m_prevPosY = -1;
// Set the number of vertices in the vertex array.
m_vertexCount = 6;
// Set the number of indices in the index array.
m_indexCount = m_vertexCount;
// Create the vertex array.
vertices = new VertexType[m_vertexCount];
// Create the index array.
indices = new unsigned long[m_indexCount];
// Initialize vertex array to zeros at first.
memset(vertices, 0, (sizeof(VertexType) * m_vertexCount));
// Load the index array with data.
for (i = 0; i < m_indexCount; i++)
{
indices[i] = i;
}
// Set up the description of the dynamic vertex buffer.
vertexBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount;
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
vertexBufferDesc.MiscFlags = 0;
vertexBufferDesc.StructureByteStride = 0;
// Give the subresource structure a pointer to the vertex data.
vertexData.pSysMem = vertices;
vertexData.SysMemPitch = 0;
vertexData.SysMemSlicePitch = 0;
// Now finally create the vertex buffer.
result = device->CreateBuffer(&vertexBufferDesc, &vertexData, &m_vertexBuffer);
if (FAILED(result))
{
return false;
}
// Set up the description of the index buffer.
indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
indexBufferDesc.ByteWidth = sizeof(unsigned long) * m_indexCount;
indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
indexBufferDesc.CPUAccessFlags = 0;
indexBufferDesc.MiscFlags = 0;
indexBufferDesc.StructureByteStride = 0;
// Give the subresource structure a pointer to the index data.
indexData.pSysMem = indices;
indexData.SysMemPitch = 0;
indexData.SysMemSlicePitch = 0;
// Create the index buffer.
result = device->CreateBuffer(&indexBufferDesc, &indexData, &m_indexBuffer);
if (FAILED(result))
{
return false;
}
// Release the arrays now that the vertex and index buffers have been created and loaded.
delete[] vertices;
vertices = 0;
delete[] indices;
indices = 0;
return true;
}
void BitmapClass::ShutdownBuffers()
{
// Release the index buffer.
if (m_indexBuffer)
{
m_indexBuffer->Release();
m_indexBuffer = 0;
}
// Release the vertex buffer.
if (m_vertexBuffer)
{
m_vertexBuffer->Release();
m_vertexBuffer = 0;
}
return;
}
bool BitmapClass::UpdateBuffers(ID3D11DeviceContext* deviceContent)
{
float left, right, top, bottom;
VertexType* vertices;
D3D11_MAPPED_SUBRESOURCE mappedResource;
VertexType* dataPtr;
HRESULT result;
// If the position we are rendering this bitmap to hasn't changed then don't update the vertex buffer.
if ((m_prevPosX == m_renderX) && (m_prevPosY == m_renderY))
{
return true;
}
// If the rendering location has changed then store the new position and update the vertex buffer.
m_prevPosX = m_renderX;
m_prevPosY = m_renderY;
// Create the vertex array.
vertices = new VertexType[m_vertexCount];
// Calculate the screen coordinates of the left side of the bitmap.
left = (float)((m_screenWidth / 2) * -1) + (float)m_renderX;
// Calculate the screen coordinates of the right side of the bitmap.
right = left + (float)m_bitmapWidth;
// Calculate the screen coordinates of the top of the bitmap.
top = (float)(m_screenHeight / 2) - (float)m_renderY;
// Calculate the screen coordinates of the bottom of the bitmap.
bottom = top - (float)m_bitmapHeight;
// Load the vertex array with data.
// First triangle.
vertices[0].position = XMFLOAT3(left, top, 0.0f); // Top left.
vertices[0].texture = XMFLOAT2(0.0f, 0.0f);
vertices[1].position = XMFLOAT3(right, bottom, 0.0f); // Bottom right.
vertices[1].texture = XMFLOAT2(1.0f, 1.0f);
vertices[2].position = XMFLOAT3(left, bottom, 0.0f); // Bottom left.
vertices[2].texture = XMFLOAT2(0.0f, 1.0f);
// Second triangle.
vertices[3].position = XMFLOAT3(left, top, 0.0f); // Top left.
vertices[3].texture = XMFLOAT2(0.0f, 0.0f);
vertices[4].position = XMFLOAT3(right, top, 0.0f); // Top right.
vertices[4].texture = XMFLOAT2(1.0f, 0.0f);
vertices[5].position = XMFLOAT3(right, bottom, 0.0f); // Bottom right.
vertices[5].texture = XMFLOAT2(1.0f, 1.0f);
// Lock the vertex buffer.
result = deviceContent->Map(m_vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (VertexType*)mappedResource.pData;
// Copy the data into the vertex buffer.
memcpy(dataPtr, (void*)vertices, (sizeof(VertexType) * m_vertexCount));
// Unlock the vertex buffer.
deviceContent->Unmap(m_vertexBuffer, 0);
// Release the pointer reference.
dataPtr = 0;
// Release the vertex array as it is no longer needed.
delete[] vertices;
vertices = 0;
return true;
}
void BitmapClass::RenderBuffers(ID3D11DeviceContext* deviceContext)
{
unsigned int stride;
unsigned int offset;
// Set vertex buffer stride and offset.
stride = sizeof(VertexType);
offset = 0;
// Set the vertex buffer to active in the input assembler so it can be rendered.
deviceContext->IASetVertexBuffers(0, 1, &m_vertexBuffer, &stride, &offset);
// Set the index buffer to active in the input assembler so it can be rendered.
deviceContext->IASetIndexBuffer(m_indexBuffer, DXGI_FORMAT_R32_UINT, 0);
// Set the type of primitive that should be rendered from this vertex buffer, in this case triangles.
deviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
return;
}
bool BitmapClass::LoadTexture(ID3D11Device* device, ID3D11DeviceContext* deviceContext, char* filename)
{
bool result;
// Create and initialize the texture object.
m_Texture = new TextureClass;
result = m_Texture->Initialize(device, deviceContext, filename);
if (!result)
{
return false;
}
// Store the size in pixels that this bitmap should be rendered at.
m_bitmapWidth = m_Texture->GetWidth();
m_bitmapHeight = m_Texture->GetHeight();
return true;
}
void BitmapClass::ReleaseTexture()
{
// Release the texture object.
if (m_Texture)
{
m_Texture->Shutdown();
delete m_Texture;
m_Texture = 0;
}
return;
}
void BitmapClass::SetRenderLocation(int x, int y)
{
m_renderX = x;
m_renderY = y;
return;
}

View File

@ -0,0 +1,58 @@
#ifndef _BITMAPCLASS_H_
#define _BITMAPCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <directxmath.h>
using namespace DirectX;
///////////////////////
// MY CLASS INCLUDES //
///////////////////////
#include "textureclass.h"
////////////////////////////////////////////////////////////////////////////////
// Class name: BitmapClass
////////////////////////////////////////////////////////////////////////////////
class BitmapClass
{
private:
struct VertexType
{
XMFLOAT3 position;
XMFLOAT2 texture;
};
public:
BitmapClass();
BitmapClass(const BitmapClass&);
~BitmapClass();
bool Initialize(ID3D11Device*, ID3D11DeviceContext*, int, int, char*, int, int);
void Shutdown();
bool Render(ID3D11DeviceContext*);
int GetIndexCount();
ID3D11ShaderResourceView* GetTexture();
void SetRenderLocation(int, int);
private:
bool InitializeBuffers(ID3D11Device*);
void ShutdownBuffers();
bool UpdateBuffers(ID3D11DeviceContext*);
void RenderBuffers(ID3D11DeviceContext*);
bool LoadTexture(ID3D11Device*, ID3D11DeviceContext*, char*);
void ReleaseTexture();
private:
ID3D11Buffer* m_vertexBuffer, * m_indexBuffer;
int m_vertexCount, m_indexCount, m_screenWidth, m_screenHeight, m_bitmapWidth, m_bitmapHeight, m_renderX, m_renderY, m_prevPosX, m_prevPosY;
TextureClass* m_Texture;
};
#endif

22
enginecustom/cube.mtl Normal file
View File

@ -0,0 +1,22 @@
# Blender MTL File: 'None'
# Material Count: 2
newmtl Material
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 2
newmtl Material.001
Ns 225.000000
Ka 1.000000 1.000000 1.000000
Kd 0.000000 0.002280 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 2

View File

@ -37,4 +37,4 @@ Data:
-1.0 -1.0 1.0 0.0 1.0 0.0 -1.0 0.0
-1.0 -1.0 1.0 0.0 1.0 0.0 -1.0 0.0
1.0 -1.0 -1.0 1.0 0.0 0.0 -1.0 0.0
1.0 -1.0 1.0 1.0 1.0 0.0 -1.0 0.0
1.0 -1.0 1.0 1.0 1.0 0.0 -1.0 0.0

View File

@ -14,6 +14,7 @@ D3DClass::D3DClass()
m_depthStencilState = 0;
m_depthStencilView = 0;
m_rasterState = 0;
m_depthDisabledStencilState = 0;
}
@ -46,7 +47,7 @@ bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hw
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
D3D11_RASTERIZER_DESC rasterDesc;
float fieldOfView, screenAspect;
D3D11_DEPTH_STENCIL_DESC depthDisabledStencilDesc;
// Store the vsync setting.
m_vsync_enabled = vsync;
@ -345,6 +346,34 @@ bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hw
// Create an orthographic projection matrix for 2D rendering.
m_orthoMatrix = XMMatrixOrthographicLH((float)screenWidth, (float)screenHeight, screenNear, screenDepth);
// Clear the second depth stencil state before setting the parameters.
ZeroMemory(&depthDisabledStencilDesc, sizeof(depthDisabledStencilDesc));
// Now create a second depth stencil state which turns off the Z buffer for 2D rendering. The only difference is
// that DepthEnable is set to false, all other parameters are the same as the other depth stencil state.
depthDisabledStencilDesc.DepthEnable = false;
depthDisabledStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
depthDisabledStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;
depthDisabledStencilDesc.StencilEnable = true;
depthDisabledStencilDesc.StencilReadMask = 0xFF;
depthDisabledStencilDesc.StencilWriteMask = 0xFF;
depthDisabledStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthDisabledStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
depthDisabledStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthDisabledStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
depthDisabledStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthDisabledStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
depthDisabledStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthDisabledStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
// Create the state using the device.
result = m_device->CreateDepthStencilState(&depthDisabledStencilDesc, &m_depthDisabledStencilState);
if (FAILED(result))
{
return false;
}
return true;
}
@ -357,6 +386,12 @@ void D3DClass::Shutdown()
m_swapChain->SetFullscreenState(false, NULL);
}
if (m_depthDisabledStencilState)
{
m_depthDisabledStencilState->Release();
m_depthDisabledStencilState = 0;
}
if (m_rasterState)
{
m_rasterState->Release();
@ -503,5 +538,18 @@ void D3DClass::ResetViewport()
// Set the viewport.
m_deviceContext->RSSetViewports(1, &m_viewport);
return;
}
void D3DClass::TurnZBufferOn()
{
m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);
return;
}
void D3DClass::TurnZBufferOff()
{
m_deviceContext->OMSetDepthStencilState(m_depthDisabledStencilState, 1);
return;
}

View File

@ -49,6 +49,9 @@ public:
void SetBackBufferRenderTarget();
void ResetViewport();
void TurnZBufferOn();
void TurnZBufferOff();
private:
bool m_vsync_enabled;
int m_videoCardMemory;
@ -65,6 +68,7 @@ private:
XMMATRIX m_worldMatrix;
XMMATRIX m_orthoMatrix;
D3D11_VIEWPORT m_viewport;
ID3D11DepthStencilState* m_depthDisabledStencilState;
};
#endif

View File

@ -21,20 +21,25 @@
</ItemGroup>
<ItemGroup>
<ClCompile Include="applicationclass.cpp" />
<ClCompile Include="bitmapclass.cpp" />
<ClCompile Include="Cameraclass.cpp" />
<ClCompile Include="Colorshaderclass.cpp" />
<ClCompile Include="d3dclass.cpp" />
<ClCompile Include="inputclass.cpp" />
<ClCompile Include="lightclass.cpp" />
<ClCompile Include="lightshaderclass.cpp" />
<ClCompile Include="Lightclass.cpp" />
<ClCompile Include="Lightshaderclass.cpp" />
<ClCompile Include="Main.cpp" />
<ClCompile Include="modelclass.cpp" />
<ClCompile Include="Multitextureshaderclass.cpp" />
<ClCompile Include="Spriteclass.cpp" />
<ClCompile Include="Systemclass.cpp" />
<ClCompile Include="textureclass.cpp" />
<ClCompile Include="textureshaderclass.cpp" />
<ClCompile Include="Timerclass.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="applicationclass.h" />
<ClInclude Include="bitmapclass.h" />
<ClInclude Include="Cameraclass.h" />
<ClInclude Include="Colorshaderclass.h" />
<ClInclude Include="d3dclass.h" />
@ -43,8 +48,11 @@
<ClInclude Include="lightshaderclass.h" />
<ClInclude Include="modelclass.h" />
<ClInclude Include="Multitextureshaderclass.h" />
<ClInclude Include="Spriteclass.h" />
<ClInclude Include="systemclass.h" />
<ClInclude Include="textureclass.h" />
<ClInclude Include="textureshaderclass.h" />
<ClInclude Include="Timerclass.h" />
</ItemGroup>
<ItemGroup>
<None Include="light.ps" />
@ -52,6 +60,8 @@
<None Include="Multitexture.ps" />
<None Include="Multitexture.vs" />
<None Include="packages.config" />
<None Include="texture.ps" />
<None Include="texture.vs" />
</ItemGroup>
<ItemGroup>
<None Include="Color.ps">
@ -75,10 +85,16 @@
<Image Include="moss01.tga" />
<Image Include="papier.tga" />
<Image Include="stone01.tga" />
<Image Include="wall.tga" />
</ItemGroup>
<ItemGroup>
<Text Include="cube.txt" />
</ItemGroup>
<ItemGroup>
<None Include="sphere.obj">
<FileType>Document</FileType>
</None>
</ItemGroup>
<PropertyGroup Label="Globals">
<VCProjectVersion>17.0</VCProjectVersion>
<Keyword>Win32Proj</Keyword>

View File

@ -58,6 +58,16 @@
<Filter>Fichiers sources</Filter>
</ClCompile>
<ClCompile Include="Multitextureshaderclass.cpp">
<ClCompile Include="bitmapclass.cpp">
<Filter>Fichiers sources</Filter>
</ClCompile>
<ClCompile Include="textureshaderclass.cpp">
<Filter>Fichiers sources</Filter>
</ClCompile>
<ClCompile Include="Spriteclass.cpp">
<Filter>Fichiers sources</Filter>
</ClCompile>
<ClCompile Include="Timerclass.cpp">
<Filter>Fichiers sources</Filter>
</ClCompile>
</ItemGroup>
@ -95,6 +105,24 @@
<ClInclude Include="lightclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="Lightshaderclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="Lightclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="bitmapclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="textureshaderclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="Spriteclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
<ClInclude Include="Timerclass.h">
<Filter>Fichiers d%27en-tête</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="packages.config" />
@ -112,8 +140,20 @@
</None>
<None Include="Multitexture.vs" />
<None Include="Multitexture.ps" />
<None Include="texture.ps">
<Filter>texture</Filter>
</None>
<None Include="texture.vs">
<Filter>texture</Filter>
</None>
<None Include="sphere.obj">
<Filter>assets</Filter>
</None>
</ItemGroup>
<ItemGroup>
<Image Include="wall.tga">
<Filter>assets</Filter>
</Image>
<Image Include="stone01.tga">
<Filter>assets</Filter>
</Image>

View File

@ -8,13 +8,12 @@
/////////////
Texture2D shaderTexture : register(t0);
SamplerState SampleType : register(s0);
cbuffer LightBuffer
{
float4 ambientColor;
float4 diffuseColor;
float3 lightDirection;
float padding;
float padding;
};
@ -25,7 +24,7 @@ struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
float3 normal : NORMAL;
};
@ -34,14 +33,14 @@ struct PixelInputType
////////////////////////////////////////////////////////////////////////////////
float4 LightPixelShader(PixelInputType input) : SV_TARGET
{
float4 textureColor;
float3 lightDir;
float lightIntensity;
float4 color;
float4 textureColor;
float3 lightDir;
float lightIntensity;
float4 color;
// Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = shaderTexture.Sample(SampleType, input.tex);
// Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = shaderTexture.Sample(SampleType, input.tex);
// Set the default output color to the ambient light value for all pixels.
color = ambientColor;
@ -62,7 +61,7 @@ float4 LightPixelShader(PixelInputType input) : SV_TARGET
color = saturate(color);
// Multiply the texture pixel and the final diffuse color to get the final pixel color result.
color = color * textureColor;
color = color * textureColor;
return color;
}
return color;
}

View File

@ -13,7 +13,6 @@ cbuffer MatrixBuffer
matrix projectionMatrix;
};
//////////////
// TYPEDEFS //
//////////////

View File

@ -28,15 +28,15 @@ void LightClass::SetAmbientColor(float red, float green, float blue, float alpha
void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha)
{
m_diffuseColor = XMFLOAT4(red, green, blue, alpha);
return;
m_diffuseColor = XMFLOAT4(red, green, blue, alpha);
return;
}
void LightClass::SetDirection(float x, float y, float z)
{
m_direction = XMFLOAT3(x, y, z);
return;
m_direction = XMFLOAT3(x, y, z);
return;
}
XMFLOAT4 LightClass::GetAmbientColor()
@ -47,11 +47,11 @@ XMFLOAT4 LightClass::GetAmbientColor()
XMFLOAT4 LightClass::GetDiffuseColor()
{
return m_diffuseColor;
return m_diffuseColor;
}
XMFLOAT3 LightClass::GetDirection()
{
return m_direction;
return m_direction;
}

View File

@ -1,3 +1,4 @@
#pragma once
////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.h
////////////////////////////////////////////////////////////////////////////////
@ -18,9 +19,9 @@ using namespace DirectX;
class LightClass
{
public:
LightClass();
LightClass(const LightClass&);
~LightClass();
LightClass();
LightClass(const LightClass&);
~LightClass();
void SetAmbientColor(float, float, float, float);
void SetDiffuseColor(float, float, float, float);

View File

@ -6,12 +6,12 @@
LightShaderClass::LightShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_lightBuffer = 0;
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_lightBuffer = 0;
}
@ -27,11 +27,17 @@ LightShaderClass::~LightShaderClass()
bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
bool result;
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
bool result;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"./Light.vs");
if (error != 0)
{
return false;
}
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"light.vs");
@ -46,31 +52,29 @@ bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if(!result)
{
return false;
}
return true;
return true;
}
void LightShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
return;
}
bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 ambientColor, XMFLOAT4 diffuseColor)
{
bool result;
bool result;
// Set the shader parameters that it will use for rendering.
@ -80,126 +84,128 @@ bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
return true;
}
bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_BUFFER_DESC lightBufferDesc;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_BUFFER_DESC lightBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage);
if(FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if(errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage);
if(FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if(errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if(FAILED(result))
{
return false;
}
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if(FAILED(result))
{
return false;
}
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(),
&m_layout);
if(FAILED(result))
{
return false;
}
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(),
&m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Create a texture sampler state description.
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
@ -208,189 +214,189 @@ bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR*
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if(FAILED(result))
{
return false;
}
if (FAILED(result))
{
return false;
}
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if(FAILED(result))
{
return false;
}
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Setup the description of the light dynamic constant buffer that is in the pixel shader.
// Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail.
lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightBufferDesc.ByteWidth = sizeof(LightBufferType);
lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightBufferDesc.MiscFlags = 0;
lightBufferDesc.StructureByteStride = 0;
// Setup the description of the light dynamic constant buffer that is in the pixel shader.
// Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail.
lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightBufferDesc.ByteWidth = sizeof(LightBufferType);
lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightBufferDesc.MiscFlags = 0;
lightBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer);
if(FAILED(result))
{
return false;
}
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer);
if (FAILED(result))
{
return false;
}
return true;
return true;
}
void LightShaderClass::ShutdownShader()
{
// Release the light constant buffer.
if(m_lightBuffer)
{
m_lightBuffer->Release();
m_lightBuffer = 0;
}
// Release the light constant buffer.
if (m_lightBuffer)
{
m_lightBuffer->Release();
m_lightBuffer = 0;
}
// Release the matrix constant buffer.
if(m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the sampler state.
if(m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the layout.
if(m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if(m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if(m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
return;
}
void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned __int64 bufferSize, i;
ofstream fout;
char* compileErrors;
unsigned __int64 bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for(i=0; i<bufferSize; i++)
{
fout << compileErrors[i];
}
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
return;
}
bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 ambientColor, XMFLOAT4 diffuseColor)
{
HRESULT result;
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
unsigned int bufferNumber;
MatrixBufferType* dataPtr;
LightBufferType* dataPtr2;
unsigned int bufferNumber;
MatrixBufferType* dataPtr;
LightBufferType* dataPtr2;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result))
{
return false;
}
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Now set the constant buffer in the vertex shader with the updated values.
// Now set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
// Lock the light constant buffer so it can be written to.
result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result))
{
return false;
}
// Lock the light constant buffer so it can be written to.
result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr2 = (LightBufferType*)mappedResource.pData;
// Get a pointer to the data in the constant buffer.
dataPtr2 = (LightBufferType*)mappedResource.pData;
// Copy the lighting variables into the constant buffer.
dataPtr2->ambientColor = ambientColor;
@ -398,33 +404,33 @@ bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, X
dataPtr2->lightDirection = lightDirection;
dataPtr2->padding = 0.0f;
// Unlock the constant buffer.
deviceContext->Unmap(m_lightBuffer, 0);
// Unlock the constant buffer.
deviceContext->Unmap(m_lightBuffer, 0);
// Set the position of the light constant buffer in the pixel shader.
bufferNumber = 0;
// Set the position of the light constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the light constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer);
// Finally set the light constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer);
return true;
return true;
}
void LightShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0);
// Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}
return;
}

View File

@ -22,12 +22,12 @@ using namespace std;
class LightShaderClass
{
private:
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
struct LightBufferType
{
@ -38,29 +38,29 @@ private:
};
public:
LightShaderClass();
LightShaderClass(const LightShaderClass&);
~LightShaderClass();
LightShaderClass();
LightShaderClass(const LightShaderClass&);
~LightShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4, XMFLOAT4);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4, XMFLOAT4);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_matrixBuffer;
ID3D11Buffer* m_lightBuffer;
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_matrixBuffer;
ID3D11Buffer* m_lightBuffer;
};
#endif

View File

@ -89,7 +89,7 @@ bool ModelClass::InitializeBuffers(ID3D11Device* device)
D3D11_BUFFER_DESC vertexBufferDesc, indexBufferDesc;
D3D11_SUBRESOURCE_DATA vertexData, indexData;
HRESULT result;
int i;
// Create the vertex array.
vertices = new VertexType[m_vertexCount];
@ -98,7 +98,7 @@ bool ModelClass::InitializeBuffers(ID3D11Device* device)
indices = new unsigned long[m_indexCount];
// Load the vertex array and index array with data.
for (int i = 0; i < m_vertexCount; i++)
for (i = 0; i < m_vertexCount; i++)
{
vertices[i].position = XMFLOAT3(m_model[i].x, m_model[i].y, m_model[i].z);
vertices[i].texture = XMFLOAT2(m_model[i].tu, m_model[i].tv);
@ -107,31 +107,6 @@ bool ModelClass::InitializeBuffers(ID3D11Device* device)
indices[i] = i;
}
//// Create the vertex array.
//vertices = new VertexType[m_vertexCount];
//// Create the index array.
//indices = new unsigned long[m_indexCount];
//// Load the vertex array with data.
//vertices[0].position = XMFLOAT3(-1.0f, -1.0f, 0.0f); // Bottom left.
//vertices[0].texture = XMFLOAT2(0.0f, 1.0f);
//vertices[0].normal = XMFLOAT3(0.0f, 0.0f, -1.0f);
//vertices[1].position = XMFLOAT3(0.0f, 1.0f, 0.0f); // Top middle.
//vertices[1].texture = XMFLOAT2(0.5f, 0.0f);
//vertices[1].normal = XMFLOAT3(0.0f, 0.0f, -1.0f);
//vertices[2].position = XMFLOAT3(1.0f, -1.0f, 0.0f); // Bottom right.
//vertices[2].texture = XMFLOAT2(1.0f, 1.0f);
//vertices[2].normal = XMFLOAT3(0.0f, 0.0f, -1.0f);
//// Load the index array with data.
//indices[0] = 0; // Bottom left.
//indices[1] = 1; // Top middle.
//indices[2] = 2; // Bottom right.
// Set up the description of the static vertex buffer.
vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
vertexBufferDesc.ByteWidth = sizeof(VertexType) * m_vertexCount;

View File

@ -8,6 +8,9 @@
#include <d3d11.h>
#include <directxmath.h>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
using namespace DirectX;
using namespace std;
@ -38,6 +41,23 @@ private:
float nx, ny, nz;
};
struct Vertex {
float x, y, z;
};
struct Texture {
float u, v;
};
struct Normal {
float nx, ny, nz;
};
struct Face {
int v1, v2, v3;
int t1, t2, t3;
int n1, n2, n3;
};
public:
ModelClass();

2
enginecustom/sphere.mtl Normal file
View File

@ -0,0 +1,2 @@
# Blender 4.0.1 MTL File: 'None'
# www.blender.org

BIN
enginecustom/sprite01.tga Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
enginecustom/sprite02.tga Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
enginecustom/sprite03.tga Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
enginecustom/sprite04.tga Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -0,0 +1,6 @@
4
sprite01.tga
sprite02.tga
sprite03.tga
sprite04.tga
250

28
enginecustom/texture.ps Normal file
View File

@ -0,0 +1,28 @@
/////////////
// GLOBALS //
/////////////
Texture2D shaderTexture : register(t0);
SamplerState SampleType : register(s0);
//////////////
// TYPEDEFS //
//////////////
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
};
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 TexturePixelShader(PixelInputType input) : SV_TARGET
{
float4 textureColor;
// Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = shaderTexture.Sample(SampleType, input.tex);
return textureColor;
}

47
enginecustom/texture.vs Normal file
View File

@ -0,0 +1,47 @@
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType TextureVertexShader(VertexInputType input)
{
PixelInputType output;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
return output;
}

View File

@ -0,0 +1,357 @@
#include "textureshaderclass.h"
TextureShaderClass::TextureShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_matrixBuffer = 0;
m_sampleState = 0;
}
TextureShaderClass::TextureShaderClass(const TextureShaderClass& other)
{
}
TextureShaderClass::~TextureShaderClass()
{
}
bool TextureShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
bool result;
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"texture.vs");
if (error != 0)
{
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"texture.ps");
if (error != 0)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
return true;
}
void TextureShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool TextureShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix,
XMMATRIX projectionMatrix, ID3D11ShaderResourceView* texture)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture);
if (!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool TextureShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[2];
unsigned int numElements;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_SAMPLER_DESC samplerDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "TextureVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "TexturePixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(),
vertexShaderBuffer->GetBufferSize(), &m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
return false;
}
return true;
}
void TextureShaderClass::ShutdownShader()
{
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void TextureShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned long long bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool TextureShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix,
XMMATRIX projectionMatrix, ID3D11ShaderResourceView* texture)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
MatrixBufferType* dataPtr;
unsigned int bufferNumber;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Finanly set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
return true;
}
void TextureShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}

View File

@ -0,0 +1,54 @@
#ifndef _TEXTURESHADERCLASS_H_
#define _TEXTURESHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <d3d11.h>
#include <d3dcompiler.h>
#include <directxmath.h>
#include <fstream>
using namespace DirectX;
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Class name: TextureShaderClass
////////////////////////////////////////////////////////////////////////////////
class TextureShaderClass
{
private:
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
public:
TextureShaderClass();
TextureShaderClass(const TextureShaderClass&);
~TextureShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11Buffer* m_matrixBuffer;
ID3D11SamplerState* m_sampleState;
};
#endif

BIN
enginecustom/wall.tga Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 768 KiB