merge 3d diffuse lighting

This commit is contained in:
StratiX0 2024-03-26 12:02:03 +01:00
parent deea6fa3ba
commit ccb666faaf
7 changed files with 1674 additions and 1679 deletions

View File

@ -8,12 +8,11 @@
///////////// /////////////
Texture2D shaderTexture : register(t0); Texture2D shaderTexture : register(t0);
SamplerState SampleType : register(s0); SamplerState SampleType : register(s0);
cbuffer LightBuffer cbuffer LightBuffer
{ {
float4 diffuseColor; float4 diffuseColor;
float3 lightDirection; float3 lightDirection;
float padding; float padding;
}; };
@ -24,7 +23,7 @@ struct PixelInputType
{ {
float4 position : SV_POSITION; float4 position : SV_POSITION;
float2 tex : TEXCOORD0; float2 tex : TEXCOORD0;
float3 normal : NORMAL; float3 normal : NORMAL;
}; };
@ -33,29 +32,26 @@ struct PixelInputType
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
float4 LightPixelShader(PixelInputType input) : SV_TARGET float4 LightPixelShader(PixelInputType input) : SV_TARGET
{ {
float4 textureColor; float4 textureColor;
float3 lightDir; float3 lightDir;
float lightIntensity; float lightIntensity;
float4 color; float4 color;
// Sample the pixel color from the texture using the sampler at this texture coordinate location. // Sample the pixel color from the texture using the sampler at this texture coordinate location.
textureColor = shaderTexture.Sample(SampleType, input.tex); textureColor = shaderTexture.Sample(SampleType, input.tex);
// Invert the light direction for calculations. // Invert the light direction for calculations.
lightDir = -lightDirection; lightDir = -lightDirection;
// Calculate the amount of light on this pixel. // Calculate the amount of light on this pixel.
lightIntensity = saturate(dot(input.normal, lightDir)); lightIntensity = saturate(dot(input.normal, lightDir));
// Change the diffuse color to red (0, 1, 0)
float3 greenDiffuseColor = float3(1, 0, 0);
// Determine the final amount of diffuse color based on the diffuse color combined with the light intensity. // Determine the final amount of diffuse color based on the diffuse color combined with the light intensity.
color = saturate(diffuseColor * lightIntensity); color = saturate(diffuseColor * lightIntensity);
// Multiply the texture pixel and the final diffuse color to get the final pixel color result. // Multiply the texture pixel and the final diffuse color to get the final pixel color result.
color = color * textureColor; color = color * textureColor;
return color; return color;
} }

View File

@ -8,12 +8,11 @@
///////////// /////////////
cbuffer MatrixBuffer cbuffer MatrixBuffer
{ {
matrix worldMatrix; matrix worldMatrix;
matrix viewMatrix; matrix viewMatrix;
matrix projectionMatrix; matrix projectionMatrix;
}; };
////////////// //////////////
// TYPEDEFS // // TYPEDEFS //
////////////// //////////////
@ -21,14 +20,14 @@ struct VertexInputType
{ {
float4 position : POSITION; float4 position : POSITION;
float2 tex : TEXCOORD0; float2 tex : TEXCOORD0;
float3 normal : NORMAL; float3 normal : NORMAL;
}; };
struct PixelInputType struct PixelInputType
{ {
float4 position : SV_POSITION; float4 position : SV_POSITION;
float2 tex : TEXCOORD0; float2 tex : TEXCOORD0;
float3 normal : NORMAL; float3 normal : NORMAL;
}; };
@ -40,18 +39,18 @@ PixelInputType LightVertexShader(VertexInputType input)
PixelInputType output; PixelInputType output;
// Change the position vector to be 4 units for proper matrix calculations. // Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f; input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices. // Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix); output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix); output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix); output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader. // Store the texture coordinates for the pixel shader.
output.tex = input.tex; output.tex = input.tex;
// Calculate the normal vector against the world matrix only. // Calculate the normal vector against the world matrix only.
output.normal = mul(input.normal, (float3x3)worldMatrix); output.normal = mul(input.normal, (float3x3)worldMatrix);
// Normalize the normal vector. // Normalize the normal vector.

View File

@ -21,25 +21,25 @@ LightClass::~LightClass()
void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha) void LightClass::SetDiffuseColor(float red, float green, float blue, float alpha)
{ {
m_diffuseColor = XMFLOAT4(red, green, blue, alpha); m_diffuseColor = XMFLOAT4(red, green, blue, alpha);
return; return;
} }
void LightClass::SetDirection(float x, float y, float z) void LightClass::SetDirection(float x, float y, float z)
{ {
m_direction = XMFLOAT3(x, y, z); m_direction = XMFLOAT3(x, y, z);
return; return;
} }
XMFLOAT4 LightClass::GetDiffuseColor() XMFLOAT4 LightClass::GetDiffuseColor()
{ {
return m_diffuseColor; return m_diffuseColor;
} }
XMFLOAT3 LightClass::GetDirection() XMFLOAT3 LightClass::GetDirection()
{ {
return m_direction; return m_direction;
} }

View File

@ -1,3 +1,4 @@
#pragma once
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Filename: lightclass.h // Filename: lightclass.h
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -18,19 +19,19 @@ using namespace DirectX;
class LightClass class LightClass
{ {
public: public:
LightClass(); LightClass();
LightClass(const LightClass&); LightClass(const LightClass&);
~LightClass(); ~LightClass();
void SetDirection(float, float, float);
void SetDiffuseColor(float, float, float, float);
XMFLOAT3 GetDirection();
XMFLOAT4 GetDiffuseColor();
void SetDiffuseColor(float, float, float, float);
void SetDirection(float, float, float);
XMFLOAT4 GetDiffuseColor();
XMFLOAT3 GetDirection();
private: private:
XMFLOAT4 m_diffuseColor; XMFLOAT4 m_diffuseColor;
XMFLOAT3 m_direction; XMFLOAT3 m_direction;
}; };
#endif #endif

View File

@ -6,12 +6,12 @@
LightShaderClass::LightShaderClass() LightShaderClass::LightShaderClass()
{ {
m_vertexShader = 0; m_vertexShader = 0;
m_pixelShader = 0; m_pixelShader = 0;
m_layout = 0; m_layout = 0;
m_sampleState = 0; m_sampleState = 0;
m_matrixBuffer = 0; m_matrixBuffer = 0;
m_lightBuffer = 0; m_lightBuffer = 0;
} }
@ -27,179 +27,179 @@ LightShaderClass::~LightShaderClass()
bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd) bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{ {
wchar_t vsFilename[128]; wchar_t vsFilename[128];
wchar_t psFilename[128]; wchar_t psFilename[128];
int error; int error;
bool result; bool result;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"./Light.vs");
if (error != 0)
{
return false;
}
// Set the filename of the vertex shader. // Set the filename of the pixel shader.
error = wcscpy_s(vsFilename, 128, L"../enginecustom/light.vs"); error = wcscpy_s(psFilename, 128, L"./Light.ps");
if (error != 0) if (error != 0)
{ {
return false; return false;
} }
// Set the filename of the pixel shader. // Initialize the vertex and pixel shaders.
error = wcscpy_s(psFilename, 128, L"../enginecustom/light.ps"); result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (error != 0) if (!result)
{ {
return false; return false;
} }
// Initialize the vertex and pixel shaders. return true;
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if(!result)
{
return false;
}
return true;
} }
void LightShaderClass::Shutdown() void LightShaderClass::Shutdown()
{ {
// Shutdown the vertex and pixel shaders as well as the related objects. // Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader(); ShutdownShader();
return; return;
} }
bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix, bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor) ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor)
{ {
bool result; bool result;
// Set the shader parameters that it will use for rendering. // Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, diffuseColor); result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, diffuseColor);
if(!result) if (!result)
{ {
return false; return false;
} }
// Now render the prepared buffers with the shader. // Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount); RenderShader(deviceContext, indexCount);
return true; return true;
} }
bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename) bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{ {
HRESULT result; HRESULT result;
ID3D10Blob* errorMessage; ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer; ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer; ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements; D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
D3D11_SAMPLER_DESC samplerDesc; D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC matrixBufferDesc; D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_BUFFER_DESC lightBufferDesc;
D3D11_BUFFER_DESC lightBufferDesc;
// Initialize the pointers this function will use to null. // Initialize the pointers this function will use to null.
errorMessage = 0; errorMessage = 0;
vertexShaderBuffer = 0; vertexShaderBuffer = 0;
pixelShaderBuffer = 0; pixelShaderBuffer = 0;
// Compile the vertex shader code. // Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage); result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage);
if(FAILED(result)) if (FAILED(result))
{ {
// If the shader failed to compile it should have writen something to the error message. // If the shader failed to compile it should have writen something to the error message.
if(errorMessage) if (errorMessage)
{ {
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename); OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
} }
// If there was nothing in the error message then it simply could not find the shader file itself. // If there was nothing in the error message then it simply could not find the shader file itself.
else else
{ {
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK); MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
} }
return false; return false;
} }
// Compile the pixel shader code. // Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage); result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage);
if(FAILED(result)) if (FAILED(result))
{ {
// If the shader failed to compile it should have writen something to the error message. // If the shader failed to compile it should have writen something to the error message.
if(errorMessage) if (errorMessage)
{ {
OutputShaderErrorMessage(errorMessage, hwnd, psFilename); OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
} }
// If there was nothing in the error message then it simply could not find the file itself. // If there was nothing in the error message then it simply could not find the file itself.
else else
{ {
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK); MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
} }
return false; return false;
} }
// Create the vertex shader from the buffer. // Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader); result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Create the pixel shader from the buffer. // Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader); result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Create the vertex input layout description. // Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader. // This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION"; polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0; polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT; polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0; polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0; polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0; polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD"; polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0; polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT; polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0; polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0; polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL"; polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0; polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT; polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0; polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0; polygonLayout[2].InstanceDataStepRate = 0;
// Get a count of the elements in the layout. // Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]); numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout. // Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(),
&m_layout); &m_layout);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed. // Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release(); vertexShaderBuffer->Release();
vertexShaderBuffer = 0; vertexShaderBuffer = 0;
pixelShaderBuffer->Release(); pixelShaderBuffer->Release();
pixelShaderBuffer = 0; pixelShaderBuffer = 0;
// Create a texture sampler state description. // Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
@ -208,222 +208,221 @@ bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR*
samplerDesc.MaxAnisotropy = 1; samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS; samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0; samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0; samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0; samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0; samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0; samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX; samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state. // Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState); result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader. // Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC; matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType); matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0; matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0; matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class. // Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer); result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Setup the description of the light dynamic constant buffer that is in the pixel shader. // Setup the description of the light dynamic constant buffer that is in the pixel shader.
// Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail. // Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail.
lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC; lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightBufferDesc.ByteWidth = sizeof(LightBufferType); lightBufferDesc.ByteWidth = sizeof(LightBufferType);
lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightBufferDesc.MiscFlags = 0; lightBufferDesc.MiscFlags = 0;
lightBufferDesc.StructureByteStride = 0; lightBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class. // Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer); result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
return true; return true;
} }
void LightShaderClass::ShutdownShader() void LightShaderClass::ShutdownShader()
{ {
// Release the light constant buffer. // Release the light constant buffer.
if(m_lightBuffer) if (m_lightBuffer)
{ {
m_lightBuffer->Release(); m_lightBuffer->Release();
m_lightBuffer = 0; m_lightBuffer = 0;
} }
// Release the matrix constant buffer. // Release the matrix constant buffer.
if(m_matrixBuffer) if (m_matrixBuffer)
{ {
m_matrixBuffer->Release(); m_matrixBuffer->Release();
m_matrixBuffer = 0; m_matrixBuffer = 0;
} }
// Release the sampler state. // Release the sampler state.
if(m_sampleState) if (m_sampleState)
{ {
m_sampleState->Release(); m_sampleState->Release();
m_sampleState = 0; m_sampleState = 0;
} }
// Release the layout. // Release the layout.
if(m_layout) if (m_layout)
{ {
m_layout->Release(); m_layout->Release();
m_layout = 0; m_layout = 0;
} }
// Release the pixel shader. // Release the pixel shader.
if(m_pixelShader) if (m_pixelShader)
{ {
m_pixelShader->Release(); m_pixelShader->Release();
m_pixelShader = 0; m_pixelShader = 0;
} }
// Release the vertex shader. // Release the vertex shader.
if(m_vertexShader) if (m_vertexShader)
{ {
m_vertexShader->Release(); m_vertexShader->Release();
m_vertexShader = 0; m_vertexShader = 0;
} }
return; return;
} }
void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename) void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{ {
char* compileErrors; char* compileErrors;
unsigned __int64 bufferSize, i; unsigned __int64 bufferSize, i;
ofstream fout; ofstream fout;
// Get a pointer to the error message text buffer. // Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer()); compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message. // Get the length of the message.
bufferSize = errorMessage->GetBufferSize(); bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to. // Open a file to write the error message to.
fout.open("shader-error.txt"); fout.open("shader-error.txt");
// Write out the error message. // Write out the error message.
for(i=0; i<bufferSize; i++) for (i = 0; i < bufferSize; i++)
{ {
fout << compileErrors[i]; fout << compileErrors[i];
} }
// Close the file. // Close the file.
fout.close(); fout.close();
// Release the error message. // Release the error message.
errorMessage->Release(); errorMessage->Release();
errorMessage = 0; errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors. // Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK); MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return; return;
} }
bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix, ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor)
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 diffuseColor)
{ {
HRESULT result; HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource; D3D11_MAPPED_SUBRESOURCE mappedResource;
unsigned int bufferNumber; unsigned int bufferNumber;
MatrixBufferType* dataPtr; MatrixBufferType* dataPtr;
LightBufferType* dataPtr2; LightBufferType* dataPtr2;
// Transpose the matrices to prepare them for the shader. // Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix); worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix); viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix); projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to. // Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Get a pointer to the data in the constant buffer. // Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData; dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer. // Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix; dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix; dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix; dataPtr->projection = projectionMatrix;
// Unlock the constant buffer. // Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0); deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader. // Set the position of the constant buffer in the vertex shader.
bufferNumber = 0; bufferNumber = 0;
// Now set the constant buffer in the vertex shader with the updated values. // Now set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer); deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Set shader texture resource in the pixel shader. // Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture); deviceContext->PSSetShaderResources(0, 1, &texture);
// Lock the light constant buffer so it can be written to. // Lock the light constant buffer so it can be written to.
result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result)) if (FAILED(result))
{ {
return false; return false;
} }
// Get a pointer to the data in the constant buffer. // Get a pointer to the data in the constant buffer.
dataPtr2 = (LightBufferType*)mappedResource.pData; dataPtr2 = (LightBufferType*)mappedResource.pData;
// Copy the lighting variables into the constant buffer. // Copy the lighting variables into the constant buffer.
dataPtr2->diffuseColor = diffuseColor; dataPtr2->diffuseColor = diffuseColor;
dataPtr2->lightDirection = lightDirection; dataPtr2->lightDirection = lightDirection;
dataPtr2->padding = 0.0f; dataPtr2->padding = 0.0f;
// Unlock the constant buffer. // Unlock the constant buffer.
deviceContext->Unmap(m_lightBuffer, 0); deviceContext->Unmap(m_lightBuffer, 0);
// Set the position of the light constant buffer in the pixel shader. // Set the position of the light constant buffer in the pixel shader.
bufferNumber = 0; bufferNumber = 0;
// Finally set the light constant buffer in the pixel shader with the updated values. // Finally set the light constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer); deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer);
return true; return true;
} }
void LightShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount) void LightShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{ {
// Set the vertex input layout. // Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout); deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle. // Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0); deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0); deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader. // Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState); deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangle. // Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0); deviceContext->DrawIndexed(indexCount, 0, 0);
return; return;
} }

View File

@ -22,44 +22,44 @@ using namespace std;
class LightShaderClass class LightShaderClass
{ {
private: private:
struct MatrixBufferType struct MatrixBufferType
{ {
XMMATRIX world; XMMATRIX world;
XMMATRIX view; XMMATRIX view;
XMMATRIX projection; XMMATRIX projection;
}; };
struct LightBufferType struct LightBufferType
{ {
XMFLOAT4 diffuseColor; XMFLOAT4 diffuseColor;
XMFLOAT3 lightDirection; XMFLOAT3 lightDirection;
float padding; // Added extra padding so structure is a multiple of 16 for CreateBuffer function requirements. float padding; // Added extra padding so structure is a multiple of 16 for CreateBuffer function requirements.
}; };
public: public:
LightShaderClass(); LightShaderClass();
LightShaderClass(const LightShaderClass&); LightShaderClass(const LightShaderClass&);
~LightShaderClass(); ~LightShaderClass();
bool Initialize(ID3D11Device*, HWND); bool Initialize(ID3D11Device*, HWND);
void Shutdown(); void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4); bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4);
private: private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*); bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader(); void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*); void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4); bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT3, XMFLOAT4);
void RenderShader(ID3D11DeviceContext*, int); void RenderShader(ID3D11DeviceContext*, int);
private: private:
ID3D11VertexShader* m_vertexShader; ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader; ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout; ID3D11InputLayout* m_layout;
ID3D11SamplerState* m_sampleState; ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_matrixBuffer; ID3D11Buffer* m_matrixBuffer;
ID3D11Buffer* m_lightBuffer; ID3D11Buffer* m_lightBuffer;
}; };
#endif #endif

File diff suppressed because it is too large Load Diff