Water Shader a finir dans le shader manager

This commit is contained in:
GolfOcean334 2024-04-11 11:02:48 +02:00
parent cf434ffca0
commit df9d3db5b1
11 changed files with 1442 additions and 7 deletions

72
KhaoticDemo/water.ps Normal file
View File

@ -0,0 +1,72 @@
/////////////
// GLOBALS //
/////////////
SamplerState SampleType : register(s0);
Texture2D reflectionTexture : register(t0);
Texture2D refractionTexture : register(t1);
Texture2D normalTexture : register(t2);
cbuffer WaterBuffer
{
float waterTranslation;
float reflectRefractScale;
float2 padding;
};
//////////////
// TYPEDEFS //
//////////////
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float4 reflectionPosition : TEXCOORD1;
float4 refractionPosition : TEXCOORD2;
};
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 WaterPixelShader(PixelInputType input) : SV_TARGET
{
float2 reflectTexCoord;
float2 refractTexCoord;
float4 normalMap;
float3 normal;
float4 reflectionColor;
float4 refractionColor;
float4 color;
// Move the position the water normal is sampled from to simulate moving water.
input.tex.y += waterTranslation;
// Calculate the projected reflection texture coordinates.
reflectTexCoord.x = input.reflectionPosition.x / input.reflectionPosition.w / 2.0f + 0.5f;
reflectTexCoord.y = -input.reflectionPosition.y / input.reflectionPosition.w / 2.0f + 0.5f;
// Calculate the projected refraction texture coordinates.
refractTexCoord.x = input.refractionPosition.x / input.refractionPosition.w / 2.0f + 0.5f;
refractTexCoord.y = -input.refractionPosition.y / input.refractionPosition.w / 2.0f + 0.5f;
// Sample the normal from the normal map texture.
normalMap = normalTexture.Sample(SampleType, input.tex);
// Expand the range of the normal from (0,1) to (-1,+1).
normal = (normalMap.xyz * 2.0f) - 1.0f;
// Re-position the texture coordinate sampling position by the normal map value to simulate the rippling wave effect.
reflectTexCoord = reflectTexCoord + (normal.xy * reflectRefractScale);
refractTexCoord = refractTexCoord + (normal.xy * reflectRefractScale);
// Sample the texture pixels from the textures using the updated texture coordinates.
reflectionColor = reflectionTexture.Sample(SampleType, reflectTexCoord);
refractionColor = refractionTexture.Sample(SampleType, refractTexCoord);
// Combine the reflection and refraction results for the final color.
color = lerp(reflectionColor, refractionColor, 0.6f);
return color;
}

View File

@ -10,12 +10,10 @@
#include "d3dclass.h"
#include "cameraclass.h"
#include "object.h"
#include "lightshaderclass.h"
#include "lightclass.h"
#include <vector>
#include <filesystem>
#include "lightmapshaderclass.h"
#include "bitmapclass.h"
#include "spriteclass.h"
#include "timerclass.h"
@ -31,6 +29,8 @@
#include "rendertextureclass.h"
#include "displayplaneclass.h"
#include "reflectionshaderclass.h"
#include "refractionshaderclass.h"
#include "watershaderclass.h"
/////////////
@ -91,6 +91,8 @@ private:
bool UpdateFps();
bool UpdateRenderCountString(int);
bool RenderSceneToTexture(float);
bool RenderRefractionToTexture();
bool RenderReflectionToTexture();
private :
@ -100,7 +102,7 @@ private :
D3DClass* m_Direct3D;
IDXGISwapChain* m_swapChain;
ModelClass* m_Model;
ModelClass* m_Model,* m_GroundModel, * m_WallModel, * m_BathModel, * m_WaterModel;
ModelListClass* m_ModelList;
// ------------------------------------- //
@ -108,7 +110,7 @@ private :
// ------------------------------------- //
XMMATRIX m_baseViewMatrix;
RenderTextureClass* m_RenderTexture;
RenderTextureClass* m_RenderTexture, * m_RefractionTexture, * m_ReflectionTexture;
DisplayPlaneClass* m_DisplayPlane;
int m_screenWidth, m_screenHeight;
CameraClass* m_Camera;
@ -138,12 +140,17 @@ private :
// ----------------------------------- //
ShaderManagerClass* m_ShaderManager;
WaterShaderClass* m_WaterShader;
FontShaderClass* m_FontShader;
ReflectionShaderClass* m_ReflectionShader;
BitmapClass* m_Bitmap;
SpriteClass* m_Sprite;
// ----------------------------------- //
// ------------ VARIABLES ------------ //
// ----------------------------------- //
float m_waterHeight, m_waterTranslation;
// ------------------------------------------------- //
// ------------- FPS AND INFO ON SCREEN ------------ //
// ------------------------------------------------- //

View File

@ -0,0 +1,63 @@
/////////////
// GLOBALS //
/////////////
SamplerState SampleType : register(s0);
Texture2D shaderTexture : register(t0);
cbuffer LightBuffer
{
float4 ambientColor;
float4 diffuseColor;
float3 lightDirection;
};
//////////////
// TYPEDEFS //
//////////////
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
float clip : SV_ClipDistance0;
};
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 RefractionPixelShader(PixelInputType input) : SV_TARGET
{
float4 textureColor;
float3 lightDir;
float lightIntensity;
float4 color;
// Sample the texture pixel at this location.
textureColor = shaderTexture.Sample(SampleType, input.tex);
// Set the default output color to the ambient light value for all pixels.
color = ambientColor;
// Invert the light direction for calculations.
lightDir = -lightDirection;
// Calculate the amount of light on this pixel.
lightIntensity = saturate(dot(input.normal, lightDir));
if(lightIntensity > 0.0f)
{
// Determine the final diffuse color based on the diffuse color and the amount of light intensity.
color += (diffuseColor * lightIntensity);
}
// Saturate the final light color.
color = saturate(color);
// Multiply the texture pixel and the input color to get the final result.
color = color * textureColor;
return color;
}

View File

@ -0,0 +1,65 @@
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
cbuffer ClipPlaneBuffer
{
float4 clipPlane;
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
float clip : SV_ClipDistance0;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType RefractionVertexShader(VertexInputType input)
{
PixelInputType output;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
// Calculate the normal vector against the world matrix only.
output.normal = mul(input.normal, (float3x3)worldMatrix);
// Normalize the normal vector.
output.normal = normalize(output.normal);
// Set the clipping plane.
output.clip = dot(mul(input.position, worldMatrix), clipPlane);
return output;
}

View File

@ -0,0 +1,472 @@
#include "refractionshaderclass.h"
RefractionShaderClass::RefractionShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_matrixBuffer = 0;
m_sampleState = 0;
m_lightBuffer = 0;
m_clipPlaneBuffer = 0;
}
RefractionShaderClass::RefractionShaderClass(const RefractionShaderClass& other)
{
}
RefractionShaderClass::~RefractionShaderClass()
{
}
bool RefractionShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
bool result;
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"refraction.vs");
if (error != 0)
{
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"refraction.ps");
if (error != 0)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
return true;
}
void RefractionShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool RefractionShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 ambientColor, XMFLOAT4 diffuseColor, XMFLOAT4 clipPlane)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, ambientColor, diffuseColor, clipPlane);
if (!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool RefractionShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC lightBufferDesc;
D3D11_BUFFER_DESC clipPlaneBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "RefractionVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "RefractionPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(),
vertexShaderBuffer->GetBufferSize(), &m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
return false;
}
// Setup the description of the light dynamic constant buffer that is in the pixel shader.
// Note that ByteWidth always needs to be a multiple of 16 if using D3D11_BIND_CONSTANT_BUFFER or CreateBuffer will fail.
lightBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightBufferDesc.ByteWidth = sizeof(LightBufferType);
lightBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightBufferDesc.MiscFlags = 0;
lightBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightBufferDesc, NULL, &m_lightBuffer);
if (FAILED(result))
{
return false;
}
// Setup the description of the clip plane dynamic constant buffer that is in the vertex shader.
clipPlaneBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
clipPlaneBufferDesc.ByteWidth = sizeof(ClipPlaneBufferType);
clipPlaneBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
clipPlaneBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
clipPlaneBufferDesc.MiscFlags = 0;
clipPlaneBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&clipPlaneBufferDesc, NULL, &m_clipPlaneBuffer);
if (FAILED(result))
{
return false;
}
return true;
}
void RefractionShaderClass::ShutdownShader()
{
// Release the clip plane constant buffer.
if (m_clipPlaneBuffer)
{
m_clipPlaneBuffer->Release();
m_clipPlaneBuffer = 0;
}
// Release the light constant buffer.
if (m_lightBuffer)
{
m_lightBuffer->Release();
m_lightBuffer = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void RefractionShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned long long bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool RefractionShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 ambientColor, XMFLOAT4 diffuseColor, XMFLOAT4 clipPlane)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
MatrixBufferType* dataPtr;
unsigned int bufferNumber;
ClipPlaneBufferType* dataPtr2;
LightBufferType* dataPtr3;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Finally set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Lock the clip plane constant buffer so it can be written to.
result = deviceContext->Map(m_clipPlaneBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result))
{
return false;
}
// Get a pointer to the data in the clip plane constant buffer.
dataPtr2 = (ClipPlaneBufferType*)mappedResource.pData;
// Copy the clip plane into the clip plane constant buffer.
dataPtr2->clipPlane = clipPlane;
// Unlock the buffer.
deviceContext->Unmap(m_clipPlaneBuffer, 0);
// Set the position of the clip plane constant buffer in the vertex shader.
bufferNumber = 1;
// Now set the clip plane constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_clipPlaneBuffer);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
// Lock the light constant buffer so it can be written to.
result = deviceContext->Map(m_lightBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr3 = (LightBufferType*)mappedResource.pData;
// Copy the lighting variables into the constant buffer.
dataPtr3->ambientColor = ambientColor;
dataPtr3->diffuseColor = diffuseColor;
dataPtr3->lightDirection = lightDirection;
// Unlock the constant buffer.
deviceContext->Unmap(m_lightBuffer, 0);
// Set the position of the light constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the light constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightBuffer);
return true;
}
void RefractionShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render the geometry.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the geometry.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}

View File

@ -0,0 +1,71 @@
#ifndef _REFRACTIONSHADERCLASS_H_
#define _REFRACTIONSHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <d3d11.h>
#include <d3dcompiler.h>
#include <directxmath.h>
#include <fstream>
using namespace DirectX;
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Class name: RefractionShaderClass
////////////////////////////////////////////////////////////////////////////////
class RefractionShaderClass
{
private:
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
struct LightBufferType
{
XMFLOAT4 ambientColor;
XMFLOAT4 diffuseColor;
XMFLOAT3 lightDirection;
float padding;
};
struct ClipPlaneBufferType
{
XMFLOAT4 clipPlane;
};
public:
RefractionShaderClass();
RefractionShaderClass(const RefractionShaderClass&);
~RefractionShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*,
XMFLOAT3, XMFLOAT4, XMFLOAT4, XMFLOAT4);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*,
XMFLOAT3, XMFLOAT4, XMFLOAT4, XMFLOAT4);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_matrixBuffer;
ID3D11Buffer* m_lightBuffer;
ID3D11Buffer* m_clipPlaneBuffer;
};
#endif

View File

@ -11,6 +11,8 @@ ShaderManagerClass::ShaderManagerClass()
m_TransparentShader = 0;
m_LightShader = 0;
m_LightMapShader = 0;
m_RefractionShader = 0;
m_WaterShader = 0;
}
@ -109,6 +111,24 @@ bool ShaderManagerClass::Initialize(ID3D11Device* device, HWND hwnd)
return false;
}
// Create and initialize the refraction shader object.
m_RefractionShader = new RefractionShaderClass;
result = m_RefractionShader->Initialize(device, hwnd);
if (!result)
{
return false;
}
// Create and initialize the water shader object.
m_WaterShader = new WaterShaderClass;
result = m_WaterShader->Initialize(device, hwnd);
if (!result)
{
return false;
}
return true;
}
@ -186,6 +206,22 @@ void ShaderManagerClass::Shutdown()
m_LightMapShader = 0;
}
// Release the refraction shader object.
if (m_RefractionShader)
{
m_RefractionShader->Shutdown();
delete m_RefractionShader;
m_RefractionShader = 0;
}
// Release the water shader object.
if (m_WaterShader)
{
m_WaterShader->Shutdown();
delete m_WaterShader;
m_WaterShader = 0;
}
return;
}
@ -324,5 +360,36 @@ bool ShaderManagerClass::RenderlightMapShader(ID3D11DeviceContext* deviceContext
return false;
}
return true;
}
bool ShaderManagerClass::RenderRefractionShader(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT3 lightDirection, XMFLOAT4 ambientColor, XMFLOAT4 diffuseColor, XMFLOAT4 clipPlane)
{
bool result;
result = m_RefractionShader->Render(deviceContext, indexCount, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, ambientColor, diffuseColor, clipPlane);
if (!result)
{
return false;
}
return true;
}
bool ShaderManagerClass::RenderWaterShader(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix, XMMATRIX reflectionMatrix,
ID3D11ShaderResourceView* reflectionTexture, ID3D11ShaderResourceView* refractionTexture, ID3D11ShaderResourceView* normalTexture,
float waterTranslation, float reflectRefractScale)
{
bool result;
result = m_RefractionShader->Render(deviceContext, indexCount, worldMatrix, viewMatrix, projectionMatrix, texture, lightDirection, ambientColor, diffuseColor, clipPlane);
if (!result)
{
return false;
}
return true;
}

View File

@ -13,6 +13,8 @@
#include "transparentshaderclass.h"
#include "lightshaderclass.h"
#include "lightmapshaderclass.h"
#include "refractionshaderclass.h"
#include "watershaderclass.h"
////////////////////////////////////////////////////////////////////////////////
@ -37,7 +39,10 @@ public:
bool RenderTransparentShader(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, float);
bool RenderlightShader(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, XMFLOAT4[], XMFLOAT4[]);
bool RenderlightMapShader(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, ID3D11ShaderResourceView*);
bool RenderRefractionShader(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*,
XMFLOAT3, XMFLOAT4, XMFLOAT4, XMFLOAT4);
bool RenderWaterShader(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*, ID3D11ShaderResourceView*,
ID3D11ShaderResourceView*, float, float);
private:
TextureShaderClass* m_TextureShader;
NormalMapShaderClass* m_NormalMapShader;
@ -48,6 +53,8 @@ private:
TransparentShaderClass* m_TransparentShader;
LightShaderClass* m_LightShader;
LightMapShaderClass* m_LightMapShader;
RefractionShaderClass* m_RefractionShader;
WaterShaderClass* m_WaterShader;
};
#endif

71
enginecustom/water.vs Normal file
View File

@ -0,0 +1,71 @@
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
cbuffer ReflectionBuffer
{
matrix reflectionMatrix;
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float4 reflectionPosition : TEXCOORD1;
float4 refractionPosition : TEXCOORD2;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType WaterVertexShader(VertexInputType input)
{
PixelInputType output;
matrix reflectProjectWorld;
matrix viewProjectWorld;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
// Create the reflection projection world matrix.
reflectProjectWorld = mul(reflectionMatrix, projectionMatrix);
reflectProjectWorld = mul(worldMatrix, reflectProjectWorld);
// Calculate the input position against the reflectProjectWorld matrix.
output.reflectionPosition = mul(input.position, reflectProjectWorld);
// Create the view projection world matrix for refraction.
viewProjectWorld = mul(viewMatrix, projectionMatrix);
viewProjectWorld = mul(worldMatrix, viewProjectWorld);
// Calculate the input position against the viewProjectWorld matrix.
output.refractionPosition = mul(input.position, viewProjectWorld);
return output;
}

View File

@ -0,0 +1,470 @@
#include "watershaderclass.h"
WaterShaderClass::WaterShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_reflectionBuffer = 0;
m_waterBuffer = 0;
}
WaterShaderClass::WaterShaderClass(const WaterShaderClass& other)
{
}
WaterShaderClass::~WaterShaderClass()
{
}
bool WaterShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
bool result;
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"../Engine/water.vs");
if (error != 0)
{
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"../Engine/water.ps");
if (error != 0)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
return true;
}
void WaterShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool WaterShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
XMMATRIX reflectionMatrix, ID3D11ShaderResourceView* reflectionTexture, ID3D11ShaderResourceView* refractionTexture,
ID3D11ShaderResourceView* normalTexture, float waterTranslation, float reflectRefractScale)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, reflectionMatrix, reflectionTexture,
refractionTexture, normalTexture, waterTranslation, reflectRefractScale);
if (!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool WaterShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[2];
unsigned int numElements;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC reflectionBufferDesc;
D3D11_BUFFER_DESC waterBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "WaterVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "WaterPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(),
vertexShaderBuffer->GetBufferSize(), &m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
return false;
}
// Setup the description of the reflection dynamic constant buffer that is in the vertex shader.
reflectionBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
reflectionBufferDesc.ByteWidth = sizeof(ReflectionBufferType);
reflectionBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
reflectionBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
reflectionBufferDesc.MiscFlags = 0;
reflectionBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&reflectionBufferDesc, NULL, &m_reflectionBuffer);
if (FAILED(result))
{
return false;
}
// Setup the description of the water dynamic constant buffer that is in the pixel shader.
waterBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
waterBufferDesc.ByteWidth = sizeof(WaterBufferType);
waterBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
waterBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
waterBufferDesc.MiscFlags = 0;
waterBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the pixel shader constant buffer from within this class.
result = device->CreateBuffer(&waterBufferDesc, NULL, &m_waterBuffer);
if (FAILED(result))
{
return false;
}
return true;
}
void WaterShaderClass::ShutdownShader()
{
// Release the water constant buffer.
if (m_waterBuffer)
{
m_waterBuffer->Release();
m_waterBuffer = 0;
}
// Release the reflection constant buffer.
if (m_reflectionBuffer)
{
m_reflectionBuffer->Release();
m_reflectionBuffer = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void WaterShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned long long bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool WaterShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix, XMMATRIX reflectionMatrix,
ID3D11ShaderResourceView* reflectionTexture, ID3D11ShaderResourceView* refractionTexture, ID3D11ShaderResourceView* normalTexture,
float waterTranslation, float reflectRefractScale)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
MatrixBufferType* dataPtr;
unsigned int bufferNumber;
ReflectionBufferType* dataPtr2;
WaterBufferType* dataPtr3;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
reflectionMatrix = XMMatrixTranspose(reflectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Finanly set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Lock the reflection constant buffer so it can be written to.
result = deviceContext->Map(m_reflectionBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr2 = (ReflectionBufferType*)mappedResource.pData;
// Copy the reflection matrix into the constant buffer.
dataPtr2->reflection = reflectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_reflectionBuffer, 0);
// Set the position of the reflection constant buffer in the vertex shader.
bufferNumber = 1;
// Finally set the reflection constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_reflectionBuffer);
// Set the reflection texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &reflectionTexture);
// Set the refraction texture resource in the pixel shader.
deviceContext->PSSetShaderResources(1, 1, &refractionTexture);
// Set the normal map texture resource in the pixel shader.
deviceContext->PSSetShaderResources(2, 1, &normalTexture);
// Lock the water constant buffer so it can be written to.
result = deviceContext->Map(m_waterBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr3 = (WaterBufferType*)mappedResource.pData;
// Copy the water data into the constant buffer.
dataPtr3->waterTranslation = waterTranslation;
dataPtr3->reflectRefractScale = reflectRefractScale;
dataPtr3->padding = XMFLOAT2(0.0f, 0.0f);
// Unlock the constant buffer.
deviceContext->Unmap(m_waterBuffer, 0);
// Set the position of the water constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the water constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_waterBuffer);
return true;
}
void WaterShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the geometry.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}

View File

@ -0,0 +1,70 @@
#ifndef _WATERSHADERCLASS_H_
#define _WATERSHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <d3d11.h>
#include <d3dcompiler.h>
#include <directxmath.h>
#include <fstream>
using namespace DirectX;
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Class name: WaterShaderClass
////////////////////////////////////////////////////////////////////////////////
class WaterShaderClass
{
private:
struct MatrixBufferType
{
XMMATRIX world;
XMMATRIX view;
XMMATRIX projection;
};
struct ReflectionBufferType
{
XMMATRIX reflection;
};
struct WaterBufferType
{
float waterTranslation;
float reflectRefractScale;
XMFLOAT2 padding;
};
public:
WaterShaderClass();
WaterShaderClass(const WaterShaderClass&);
~WaterShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, XMMATRIX, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*,
ID3D11ShaderResourceView*, ID3D11ShaderResourceView*, float, float);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, XMMATRIX, XMMATRIX, XMMATRIX, XMMATRIX, ID3D11ShaderResourceView*,
ID3D11ShaderResourceView*, ID3D11ShaderResourceView*, float, float);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11Buffer* m_matrixBuffer;
ID3D11SamplerState* m_sampleState;
ID3D11Buffer* m_reflectionBuffer;
ID3D11Buffer* m_waterBuffer;
};
#endif