additional lib for vulkan

This commit is contained in:
2025-03-22 14:52:39 +01:00
parent 648fc887d6
commit e991d069fe
1067 changed files with 654174 additions and 144384 deletions

View File

@@ -0,0 +1,203 @@
/* Copyright (c) 2015-2017, 2019-2024 The Khronos Group Inc.
* Copyright (c) 2015-2017, 2019-2024 Valve Corporation
* Copyright (c) 2015-2017, 2019-2024 LunarG, Inc.
* Modifications Copyright (C) 2022 RasterGrid Kft.
*
* SPDX-License-Identifier: Apache-2.0
*
*/
#pragma once
#include <stdint.h>
#include <array>
#include <functional>
#include <mutex>
#include <shared_mutex>
#include <unordered_map>
#include <vector>
namespace vku {
namespace concurrent {
// https://en.cppreference.com/w/cpp/thread/hardware_destructive_interference_size
// https://en.wikipedia.org/wiki/False_sharing
// TODO use C++20 to check for std::hardware_destructive_interference_size feature support.
constexpr std::size_t get_hardware_destructive_interference_size() { return 64; }
// Limited concurrent unordered_map that supports internally-synchronized
// insert/erase/access. Splits locking across N buckets and uses shared_mutex
// for read/write locking. Iterators are not supported. The following
// operations are supported:
//
// insert_or_assign: Insert a new element or update an existing element.
// insert: Insert a new element and return whether it was inserted.
// erase: Remove an element.
// contains: Returns true if the key is in the map.
// find: Returns != end() if found, value is in ret->second.
// pop: Erases and returns the erased value if found.
//
// find/end: find returns a vaguely iterator-like type that can be compared to
// end and can use iter->second to retrieve the reference. This is to ease porting
// for existing code that combines the existence check and lookup in a single
// operation (and thus a single lock). i.e.:
//
// auto iter = map.find(key);
// if (iter != map.end()) {
// T t = iter->second;
// ...
//
// snapshot: Return an array of elements (key, value pairs) that satisfy an optional
// predicate. This can be used as a substitute for iterators in exceptional cases.
template <typename Key, typename T, int BUCKETSLOG2 = 2, typename Map = std::unordered_map<Key, T>>
class unordered_map {
// Aliases to avoid excessive typing. We can't easily auto these away because
// there are virtual methods in ValidationObject which return lock guards
// and those cannot use return type deduction.
using ReadLockGuard = std::shared_lock<std::shared_mutex>;
using WriteLockGuard = std::unique_lock<std::shared_mutex>;
public:
template <typename... Args>
void insert_or_assign(const Key &key, Args &&...args) {
uint32_t h = ConcurrentMapHashObject(key);
WriteLockGuard lock(locks[h].lock);
maps[h][key] = {std::forward<Args>(args)...};
}
template <typename... Args>
bool insert(const Key &key, Args &&...args) {
uint32_t h = ConcurrentMapHashObject(key);
WriteLockGuard lock(locks[h].lock);
auto ret = maps[h].emplace(key, std::forward<Args>(args)...);
return ret.second;
}
// returns size_type
size_t erase(const Key &key) {
uint32_t h = ConcurrentMapHashObject(key);
WriteLockGuard lock(locks[h].lock);
return maps[h].erase(key);
}
bool contains(const Key &key) const {
uint32_t h = ConcurrentMapHashObject(key);
ReadLockGuard lock(locks[h].lock);
return maps[h].count(key) != 0;
}
// type returned by find() and end().
class FindResult {
public:
FindResult(bool a, T b) : result(a, std::move(b)) {}
// == and != only support comparing against end()
bool operator==(const FindResult &other) const {
if (result.first == false && other.result.first == false) {
return true;
}
return false;
}
bool operator!=(const FindResult &other) const { return !(*this == other); }
// Make -> act kind of like an iterator.
std::pair<bool, T> *operator->() { return &result; }
const std::pair<bool, T> *operator->() const { return &result; }
private:
// (found, reference to element)
std::pair<bool, T> result;
};
// find()/end() return a FindResult containing a copy of the value. For end(),
// return a default value.
FindResult end() const { return FindResult(false, T()); }
FindResult cend() const { return end(); }
FindResult find(const Key &key) const {
uint32_t h = ConcurrentMapHashObject(key);
ReadLockGuard lock(locks[h].lock);
auto itr = maps[h].find(key);
const bool found = itr != maps[h].end();
if (found) {
return FindResult(true, itr->second);
} else {
return end();
}
}
FindResult pop(const Key &key) {
uint32_t h = ConcurrentMapHashObject(key);
WriteLockGuard lock(locks[h].lock);
auto itr = maps[h].find(key);
const bool found = itr != maps[h].end();
if (found) {
auto ret = FindResult(true, itr->second);
maps[h].erase(itr);
return ret;
} else {
return end();
}
}
std::vector<std::pair<const Key, T>> snapshot(std::function<bool(T)> f = nullptr) const {
std::vector<std::pair<const Key, T>> ret;
for (int h = 0; h < BUCKETS; ++h) {
ReadLockGuard lock(locks[h].lock);
for (const auto &j : maps[h]) {
if (!f || f(j.second)) {
ret.emplace_back(j.first, j.second);
}
}
}
return ret;
}
void clear() {
for (int h = 0; h < BUCKETS; ++h) {
WriteLockGuard lock(locks[h].lock);
maps[h].clear();
}
}
size_t size() const {
size_t result = 0;
for (int h = 0; h < BUCKETS; ++h) {
ReadLockGuard lock(locks[h].lock);
result += maps[h].size();
}
return result;
}
bool empty() const {
bool result = 0;
for (int h = 0; h < BUCKETS; ++h) {
ReadLockGuard lock(locks[h].lock);
result |= maps[h].empty();
}
return result;
}
private:
static const int BUCKETS = (1 << BUCKETSLOG2);
Map maps[BUCKETS];
struct alignas(get_hardware_destructive_interference_size()) AlignedSharedMutex {
std::shared_mutex lock;
};
mutable std::array<AlignedSharedMutex, BUCKETS> locks;
uint32_t ConcurrentMapHashObject(const Key &object) const {
uint64_t u64 = (uint64_t)(uintptr_t)object;
uint32_t hash = (uint32_t)(u64 >> 32) + (uint32_t)u64;
hash ^= (hash >> BUCKETSLOG2) ^ (hash >> (2 * BUCKETSLOG2));
hash &= (BUCKETS - 1);
return hash;
}
};
} // namespace concurrent
} // namespace vku

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,124 @@
/***************************************************************************
*
* Copyright (c) 2015-2024 The Khronos Group Inc.
* Copyright (c) 2015-2024 Valve Corporation
* Copyright (c) 2015-2024 LunarG, Inc.
* Copyright (c) 2015-2024 Google Inc.
*
* SPDX-License-Identifier: Apache-2.0
*
****************************************************************************/
#pragma once
#include <vulkan/vulkan.h>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <vector>
namespace vku {
// State that elements in a pNext chain may need to be aware of
struct PNextCopyState {
// Custom initialization function. Returns true if the structure passed to init was initialized, false otherwise
std::function<bool(VkBaseOutStructure* /* safe_sruct */, const VkBaseOutStructure* /* in_struct */)> init;
};
void* SafePnextCopy(const void* pNext, PNextCopyState* copy_state = {});
void FreePnextChain(const void* pNext);
char* SafeStringCopy(const char* in_string);
template <typename Base, typename T>
bool AddToPnext(Base& base, const T& data) {
assert(base.ptr()); // All safe struct have a ptr() method. Prevent use with non-safe structs.
auto** prev = reinterpret_cast<VkBaseOutStructure**>(const_cast<void**>(&base.pNext));
auto* current = *prev;
while (current) {
if (data.sType == current->sType) {
return false;
}
prev = reinterpret_cast<VkBaseOutStructure**>(&current->pNext);
current = *prev;
}
*prev = reinterpret_cast<VkBaseOutStructure*>(SafePnextCopy(&data));
return true;
}
template <typename Base>
bool RemoveFromPnext(Base& base, VkStructureType t) {
assert(base.ptr()); // All safe struct have a ptr() method. Prevent use with non-safe structs.
auto** prev = reinterpret_cast<VkBaseOutStructure**>(const_cast<void**>(&base.pNext));
auto* current = *prev;
while (current) {
if (t == current->sType) {
*prev = current->pNext;
current->pNext = nullptr;
FreePnextChain(current);
return true;
}
prev = reinterpret_cast<VkBaseOutStructure**>(&current->pNext);
current = *prev;
}
return false;
}
template <typename CreateInfo>
uint32_t FindExtension(CreateInfo& ci, const char* extension_name) {
assert(ci.ptr()); // All safe struct have a ptr() method. Prevent use with non-safe structs.
for (uint32_t i = 0; i < ci.enabledExtensionCount; i++) {
if (strcmp(ci.ppEnabledExtensionNames[i], extension_name) == 0) {
return i;
}
}
return ci.enabledExtensionCount;
}
template <typename CreateInfo>
bool AddExtension(CreateInfo& ci, const char* extension_name) {
assert(ci.ptr()); // All safe struct have a ptr() method. Prevent use with non-safe structs.
uint32_t pos = FindExtension(ci, extension_name);
if (pos < ci.enabledExtensionCount) {
// already present
return false;
}
char** exts = new char*[ci.enabledExtensionCount + 1];
memcpy(exts, ci.ppEnabledExtensionNames, sizeof(char*) * ci.enabledExtensionCount);
exts[ci.enabledExtensionCount] = SafeStringCopy(extension_name);
delete[] ci.ppEnabledExtensionNames;
ci.ppEnabledExtensionNames = exts;
ci.enabledExtensionCount++;
return true;
}
template <typename CreateInfo>
bool RemoveExtension(CreateInfo& ci, const char* extension_name) {
assert(ci.ptr()); // All safe struct have a ptr() method. Prevent use with non-safe structs.
uint32_t pos = FindExtension(ci, extension_name);
if (pos >= ci.enabledExtensionCount) {
// not present
return false;
}
if (ci.enabledExtensionCount == 1) {
delete[] ci.ppEnabledExtensionNames[0];
delete[] ci.ppEnabledExtensionNames;
ci.ppEnabledExtensionNames = nullptr;
ci.enabledExtensionCount = 0;
return true;
}
uint32_t out_pos = 0;
char** exts = new char*[ci.enabledExtensionCount - 1];
for (uint32_t i = 0; i < ci.enabledExtensionCount; i++) {
if (i == pos) {
delete[] ci.ppEnabledExtensionNames[i];
} else {
exts[out_pos++] = const_cast<char*>(ci.ppEnabledExtensionNames[i]);
}
}
delete[] ci.ppEnabledExtensionNames;
ci.ppEnabledExtensionNames = exts;
ci.enabledExtensionCount--;
return true;
}
} // namespace vku

View File

@@ -0,0 +1,713 @@
/* Copyright (c) 2015-2017, 2019-2024 The Khronos Group Inc.
* Copyright (c) 2015-2017, 2019-2024 Valve Corporation
* Copyright (c) 2015-2017, 2019-2024 LunarG, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*
*/
#pragma once
#include <cassert>
#include <memory>
#include <unordered_map>
#include <unordered_set>
namespace vku {
namespace small {
// A vector class with "small string optimization" -- meaning that the class contains a fixed working store for N elements.
// Useful in in situations where the needed size is unknown, but the typical size is known If size increases beyond the
// fixed capacity, a dynamically allocated working store is created.
//
// NOTE: Unlike std::vector which only requires T to be CopyAssignable and CopyConstructable, small::vector requires T to be
// MoveAssignable and MoveConstructable
// NOTE: Unlike std::vector, iterators are invalidated by move assignment between small::vector objects effectively the
// "small string" allocation functions as an incompatible allocator.
template <typename T, size_t N, typename SizeType = uint32_t>
class vector {
public:
using value_type = T;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = value_type *;
using const_pointer = const value_type *;
using iterator = pointer;
using const_iterator = const_pointer;
using size_type = SizeType;
static const size_type kSmallCapacity = N;
static const size_type kMaxCapacity = std::numeric_limits<size_type>::max();
static_assert(N <= kMaxCapacity, "size must be less than size_type::max");
vector() : size_(0), capacity_(N), working_store_(GetSmallStore()) {}
vector(std::initializer_list<T> list) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(list); }
vector(const vector &other) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(other); }
vector(vector &&other) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
if (other.large_store_) {
MoveLargeStore(other);
} else {
PushBackFrom(std::move(other));
}
// Per the spec, when constructing from other, other is guaranteed to be empty after the constructor runs
other.clear();
}
vector(size_type size, const value_type &value = value_type()) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
reserve(size);
auto dest = GetWorkingStore();
for (size_type i = 0; i < size; i++) {
new (dest) value_type(value);
++dest;
}
size_ = size;
}
~vector() { clear(); }
bool operator==(const vector &rhs) const {
if (size_ != rhs.size_) return false;
auto value = begin();
for (const auto &rh_value : rhs) {
if (!(*value == rh_value)) {
return false;
}
++value;
}
return true;
}
bool operator!=(const vector &rhs) const { return !(*this == rhs); }
vector &operator=(const vector &other) {
if (this != &other) {
if (other.size_ > capacity_) {
// Calling reserve would move construct and destroy all current contents, so just clear them before calling
// PushBackFrom (which does a reserve vs. the now empty this)
clear();
PushBackFrom(other);
} else {
// The copy will fit into the current allocation
auto dest = GetWorkingStore();
auto source = other.GetWorkingStore();
const auto overlap = std::min(size_, other.size_);
// Copy assign anywhere we have objects in this
// Note: usually cheaper than destruct/construct
for (size_type i = 0; i < overlap; i++) {
dest[i] = source[i];
}
// Copy construct anywhere we *don't* have objects in this
for (size_type i = overlap; i < other.size_; i++) {
new (dest + i) value_type(source[i]);
}
// Any entries in this past other_size_ must be cleaned up...
for (size_type i = other.size_; i < size_; i++) {
dest[i].~value_type();
}
size_ = other.size_;
}
}
return *this;
}
vector &operator=(vector &&other) {
if (this != &other) {
// Note: move assign doesn't require other to become empty (as does move construction)
// so we'll leave other alone except in the large store case, while moving the object
// *in* the vector from other
if (other.large_store_) {
// Moving the other large store intact is probably best, even if we have to destroy everything in this.
clear();
MoveLargeStore(other);
} else if (other.size_ > capacity_) {
// If we'd have to reallocate, just clean up minimally and copy normally
clear();
PushBackFrom(std::move(other));
} else {
// The copy will fit into the current allocation
auto dest = GetWorkingStore();
auto source = other.GetWorkingStore();
const auto overlap = std::min(size_, other.size_);
// Move assign where we have objects in this
// Note: usually cheaper than destruct/construct
for (size_type i = 0; i < overlap; i++) {
dest[i] = std::move(source[i]);
}
// Move construct where we *don't* have objects in this
for (size_type i = overlap; i < other.size_; i++) {
new (dest + i) value_type(std::move(source[i]));
}
// Any entries in this past other_size_ must be cleaned up...
for (size_type i = other.size_; i < size_; i++) {
dest[i].~value_type();
}
size_ = other.size_;
}
}
return *this;
}
reference operator[](size_type pos) {
assert(pos < size_);
return GetWorkingStore()[pos];
}
const_reference operator[](size_type pos) const {
assert(pos < size_);
return GetWorkingStore()[pos];
}
// Like std::vector:: calling front or back on an empty container causes undefined behavior
reference front() {
assert(size_ > 0);
return GetWorkingStore()[0];
}
const_reference front() const {
assert(size_ > 0);
return GetWorkingStore()[0];
}
reference back() {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
const_reference back() const {
assert(size_ > 0);
return GetWorkingStore()[size_ - 1];
}
bool empty() const { return size_ == 0; }
template <class... Args>
void emplace_back(Args &&...args) {
assert(size_ < kMaxCapacity);
reserve(size_ + 1);
new (GetWorkingStore() + size_) value_type(args...);
size_++;
}
// Note: probably should update this to reflect C++23 ranges
template <typename Container>
void PushBackFrom(const Container &from) {
assert(from.size() <= kMaxCapacity);
assert(size_ <= kMaxCapacity - from.size());
const size_type new_size = size_ + static_cast<size_type>(from.size());
reserve(new_size);
auto dest = GetWorkingStore() + size_;
for (const auto &element : from) {
new (dest) value_type(element);
++dest;
}
size_ = new_size;
}
template <typename Container>
void PushBackFrom(Container &&from) {
assert(from.size() < kMaxCapacity);
const size_type new_size = size_ + static_cast<size_type>(from.size());
reserve(new_size);
auto dest = GetWorkingStore() + size_;
for (auto &element : from) {
new (dest) value_type(std::move(element));
++dest;
}
size_ = new_size;
}
void reserve(size_type new_cap) {
// Since this can't shrink, if we're growing we're newing
if (new_cap > capacity_) {
assert(capacity_ >= kSmallCapacity);
auto new_store = std::unique_ptr<BackingStore[]>(new BackingStore[new_cap]);
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
new (new_store[i].data) value_type(std::move(working_store[i]));
working_store[i].~value_type();
}
large_store_ = std::move(new_store);
assert(new_cap > kSmallCapacity);
capacity_ = new_cap;
}
UpdateWorkingStore();
// No shrink here.
}
void clear() {
// Keep clear minimal to optimize reset functions for enduring objects
// more work is deferred until destruction (freeing of large_store for example)
// and we intentionally *aren't* shrinking. Callers that desire shrink semantics
// can call shrink_to_fit.
auto working_store = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
working_store[i].~value_type();
}
size_ = 0;
}
void resize(size_type count) {
struct ValueInitTag { // tag to request value-initialization
explicit ValueInitTag() = default;
};
Resize(count, ValueInitTag{});
}
void resize(size_type count, const value_type &value) { Resize(count, value); }
void shrink_to_fit() {
if (size_ == 0) {
// shrink resets to small when empty
capacity_ = kSmallCapacity;
large_store_.reset();
UpdateWorkingStore();
} else if ((capacity_ > kSmallCapacity) && (capacity_ > size_)) {
auto source = GetWorkingStore();
// Keep the source from disappearing until the end of the function
auto old_store = std::unique_ptr<BackingStore[]>(std::move(large_store_));
assert(!large_store_);
if (size_ < kSmallCapacity) {
capacity_ = kSmallCapacity;
} else {
large_store_ = std::unique_ptr<BackingStore[]>(new BackingStore[size_]);
capacity_ = size_;
}
UpdateWorkingStore();
auto dest = GetWorkingStore();
for (size_type i = 0; i < size_; i++) {
dest[i] = std::move(source[i]);
source[i].~value_type();
}
}
}
inline iterator begin() { return GetWorkingStore(); }
inline const_iterator cbegin() const { return GetWorkingStore(); }
inline const_iterator begin() const { return GetWorkingStore(); }
inline iterator end() { return GetWorkingStore() + size_; }
inline const_iterator cend() const { return GetWorkingStore() + size_; }
inline const_iterator end() const { return GetWorkingStore() + size_; }
inline size_type size() const { return size_; }
auto capacity() const { return capacity_; }
inline pointer data() { return GetWorkingStore(); }
inline const_pointer data() const { return GetWorkingStore(); }
protected:
inline const_pointer ComputeWorkingStore() const {
assert(large_store_ || (capacity_ == kSmallCapacity));
const BackingStore *store = large_store_ ? large_store_.get() : small_store_;
return &store->object;
}
inline pointer ComputeWorkingStore() {
assert(large_store_ || (capacity_ == kSmallCapacity));
BackingStore *store = large_store_ ? large_store_.get() : small_store_;
return &store->object;
}
void UpdateWorkingStore() { working_store_ = ComputeWorkingStore(); }
inline const_pointer GetWorkingStore() const {
DbgWorkingStoreCheck();
return working_store_;
}
inline pointer GetWorkingStore() {
DbgWorkingStoreCheck();
return working_store_;
}
inline pointer GetSmallStore() { return &small_store_->object; }
union BackingStore {
BackingStore() {}
~BackingStore() {}
uint8_t data[sizeof(value_type)];
value_type object;
};
size_type size_;
size_type capacity_;
BackingStore small_store_[N];
std::unique_ptr<BackingStore[]> large_store_;
value_type *working_store_;
#ifndef NDEBUG
void DbgWorkingStoreCheck() const { assert(ComputeWorkingStore() == working_store_); }
#else
void DbgWorkingStoreCheck() const {}
#endif
private:
void MoveLargeStore(vector &other) {
assert(other.large_store_);
assert(other.capacity_ > kSmallCapacity);
// In move operations, from a small vector with a large store, we can move from it
large_store_ = std::move(other.large_store_);
capacity_ = other.capacity_;
size_ = other.size_;
UpdateWorkingStore();
// We've stolen other's large store, must leave it in a valid state
other.size_ = 0;
other.capacity_ = kSmallCapacity;
other.UpdateWorkingStore();
}
template <typename T2>
void Resize(size_type new_size, const T2 &value) {
if (new_size < size_) {
auto working_store = GetWorkingStore();
for (size_type i = new_size; i < size_; i++) {
working_store[i].~value_type();
}
size_ = new_size;
} else if (new_size > size_) {
reserve(new_size);
// if T2 != T and T is not DefaultInsertable, new values will be undefined
if constexpr (std::is_same_v<T2, T> || std::is_default_constructible_v<T>) {
for (size_type i = size_; i < new_size; ++i) {
if constexpr (std::is_same_v<T2, T>) {
emplace_back(value_type(value));
} else if constexpr (std::is_default_constructible_v<T>) {
emplace_back(value_type());
}
}
assert(size() == new_size);
} else {
size_ = new_size;
}
}
}
};
// This is a wrapper around unordered_map that optimizes for the common case
// of only containing a small number of elements. The first N elements are stored
// inline in the object and don't require hashing or memory (de)allocation.
template <typename Key, typename value_type, typename inner_container_type, typename value_type_helper, int N>
class container_base {
protected:
bool small_data_allocated[N];
value_type small_data[N];
inner_container_type inner_cont;
value_type_helper helper;
public:
container_base() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
}
class iterator {
typedef typename inner_container_type::iterator inner_iterator;
friend class container_base<Key, value_type, inner_container_type, value_type_helper, N>;
container_base<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
iterator() {}
iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
class const_iterator {
typedef typename inner_container_type::const_iterator inner_iterator;
friend class container_base<Key, value_type, inner_container_type, value_type_helper, N>;
const container_base<Key, value_type, inner_container_type, value_type_helper, N> *parent;
int index;
inner_iterator it;
public:
const_iterator() {}
const_iterator operator++() {
if (index < N) {
index++;
while (index < N && !parent->small_data_allocated[index]) {
index++;
}
if (index < N) {
return *this;
}
it = parent->inner_cont.begin();
return *this;
}
++it;
return *this;
}
bool operator==(const const_iterator &other) const {
if ((index < N) != (other.index < N)) {
return false;
}
if (index < N) {
return (index == other.index);
}
return it == other.it;
}
bool operator!=(const const_iterator &other) const { return !(*this == other); }
const value_type &operator*() const {
if (index < N) {
return parent->small_data[index];
}
return *it;
}
const value_type *operator->() const {
if (index < N) {
return &parent->small_data[index];
}
return &*it;
}
};
iterator begin() {
iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
iterator end() {
iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
const_iterator begin() const {
const_iterator it;
it.parent = this;
// If index 0 is allocated, return it, otherwise use operator++ to find the first
// allocated element.
it.index = 0;
if (small_data_allocated[0]) {
return it;
}
++it;
return it;
}
const_iterator end() const {
const_iterator it;
it.parent = this;
it.index = N;
it.it = inner_cont.end();
return it;
}
bool contains(const Key &key) const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
return true;
}
}
// check size() first to avoid hashing key unnecessarily.
if (inner_cont.size() == 0) {
return false;
}
return inner_cont.find(key) != inner_cont.end();
}
typename inner_container_type::size_type count(const Key &key) const { return contains(key) ? 1 : 0; }
std::pair<iterator, bool> insert(const value_type &value) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], value)) {
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, false);
}
}
// check size() first to avoid hashing key unnecessarily.
auto iter = inner_cont.size() > 0 ? inner_cont.find(helper.get_key(value)) : inner_cont.end();
if (iter != inner_cont.end()) {
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, false);
} else {
for (int i = 0; i < N; ++i) {
if (!small_data_allocated[i]) {
small_data_allocated[i] = true;
helper.assign(small_data[i], value);
iterator it;
it.parent = this;
it.index = i;
return std::make_pair(it, true);
}
}
iter = inner_cont.insert(value).first;
iterator it;
it.parent = this;
it.index = N;
it.it = iter;
return std::make_pair(it, true);
}
}
typename inner_container_type::size_type erase(const Key &key) {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
small_data_allocated[i] = false;
return 1;
}
}
return inner_cont.erase(key);
}
typename inner_container_type::size_type size() const {
auto size = inner_cont.size();
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
size++;
}
}
return size;
}
bool empty() const {
for (int i = 0; i < N; ++i) {
if (small_data_allocated[i]) {
return false;
}
}
return inner_cont.size() == 0;
}
void clear() {
for (int i = 0; i < N; ++i) {
small_data_allocated[i] = false;
}
inner_cont.clear();
}
};
// Helper function objects to compare/assign/get keys in small_unordered_set/map.
// This helps to abstract away whether value_type is a Key or a pair<Key, T>.
template <typename MapType>
class value_type_helper_map {
using PairType = typename MapType::value_type;
using Key = typename std::remove_const<typename PairType::first_type>::type;
public:
bool compare_equal(const PairType &lhs, const Key &rhs) const { return lhs.first == rhs; }
bool compare_equal(const PairType &lhs, const PairType &rhs) const { return lhs.first == rhs.first; }
void assign(PairType &lhs, const PairType &rhs) const {
// While the const_cast may be unsatisfactory, we are using small_data as
// stand-in for placement new and a small-block allocator, so the const_cast
// is minimal, contained, valid, and allows operators * and -> to avoid copies
const_cast<Key &>(lhs.first) = rhs.first;
lhs.second = rhs.second;
}
Key get_key(const PairType &value) const { return value.first; }
};
template <typename Key>
class value_type_helper_set {
public:
bool compare_equal(const Key &lhs, const Key &rhs) const { return lhs == rhs; }
void assign(Key &lhs, const Key &rhs) const { lhs = rhs; }
Key get_key(const Key &value) const { return value; }
};
template <typename Key, typename T, int N = 1, typename Map = std::unordered_map<Key, T>>
class unordered_map : public container_base<Key, typename Map::value_type, Map, value_type_helper_map<Map>, N> {
public:
T &operator[](const Key &key) {
for (int i = 0; i < N; ++i) {
if (this->small_data_allocated[i] && this->helper.compare_equal(this->small_data[i], key)) {
return this->small_data[i].second;
}
}
auto iter = this->inner_cont.find(key);
if (iter != this->inner_cont.end()) {
return iter->second;
} else {
for (int i = 0; i < N; ++i) {
if (!this->small_data_allocated[i]) {
this->small_data_allocated[i] = true;
this->helper.assign(this->small_data[i], {key, T()});
return this->small_data[i].second;
}
}
return this->inner_cont[key];
}
}
};
template <typename Key, int N = 1, typename Set = std::unordered_set<Key>>
class unordered_set : public container_base<Key, Key, Set, value_type_helper_set<Key>, N> {};
} // namespace small
} // namespace vku

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff