//////////////////////////////////////////////////////////////////////////////// // Filename: colorshaderclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "colorshaderclass.h" ColorShaderClass::ColorShaderClass() { m_vertexShader = 0; m_pixelShader = 0; m_layout = 0; m_matrixBuffer = 0; } ColorShaderClass::ColorShaderClass(const ColorShaderClass& other) { } ColorShaderClass::~ColorShaderClass() { } bool ColorShaderClass::Initialize(ID3D11Device* device, HWND hwnd) { bool result; wchar_t vsFilename[128]; wchar_t psFilename[128]; int error; // Set the filename of the vertex shader. error = wcscpy_s(vsFilename, 128, L"../Engine/color.vs"); if (error != 0) { return false; } // Set the filename of the pixel shader. error = wcscpy_s(psFilename, 128, L"../Engine/color.ps"); if (error != 0) { return false; } // Initialize the vertex and pixel shaders. result = InitializeShader(device, hwnd, vsFilename, psFilename); if (!result) { return false; } return true; } void ColorShaderClass::Shutdown() { // Shutdown the vertex and pixel shaders as well as the related objects. ShutdownShader(); return; } bool ColorShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix) { bool result; // Set the shader parameters that it will use for rendering. result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix); if (!result) { return false; } // Now render the prepared buffers with the shader. RenderShader(deviceContext, indexCount); return true; } bool ColorShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename) { HRESULT result; ID3D10Blob* errorMessage; ID3D10Blob* vertexShaderBuffer; ID3D10Blob* pixelShaderBuffer; D3D11_INPUT_ELEMENT_DESC polygonLayout[2]; unsigned int numElements; D3D11_BUFFER_DESC matrixBufferDesc; // Initialize the pointers this function will use to null. errorMessage = 0; vertexShaderBuffer = 0; pixelShaderBuffer = 0; // Compile the vertex shader code. result = D3DCompileFromFile(vsFilename, NULL, NULL, "ColorVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage); if (FAILED(result)) { // If the shader failed to compile it should have writen something to the error message. if (errorMessage) { OutputShaderErrorMessage(errorMessage, hwnd, vsFilename); } // If there was nothing in the error message then it simply could not find the shader file itself. else { MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK); } return false; } // Compile the pixel shader code. result = D3DCompileFromFile(psFilename, NULL, NULL, "ColorPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage); if (FAILED(result)) { // If the shader failed to compile it should have writen something to the error message. if (errorMessage) { OutputShaderErrorMessage(errorMessage, hwnd, psFilename); } // If there was nothing in the error message then it simply could not find the file itself. else { MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK); } return false; } // Create the vertex shader from the buffer. result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader); if (FAILED(result)) { return false; } // Create the pixel shader from the buffer. result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader); if (FAILED(result)) { return false; } // Create the vertex input layout description. // This setup needs to match the VertexType stucture in the ModelClass and in the shader. polygonLayout[0].SemanticName = "POSITION"; polygonLayout[0].SemanticIndex = 0; polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT; polygonLayout[0].InputSlot = 0; polygonLayout[0].AlignedByteOffset = 0; polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[0].InstanceDataStepRate = 0; polygonLayout[1].SemanticName = "COLOR"; polygonLayout[1].SemanticIndex = 0; polygonLayout[1].Format = DXGI_FORMAT_R32G32B32A32_FLOAT; polygonLayout[1].InputSlot = 0; polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[1].InstanceDataStepRate = 0; // Get a count of the elements in the layout. numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]); // Create the vertex input layout. result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), &m_layout); if (FAILED(result)) { return false; } // Release the vertex shader buffer and pixel shader buffer since they are no longer needed. vertexShaderBuffer->Release(); vertexShaderBuffer = 0; pixelShaderBuffer->Release(); pixelShaderBuffer = 0; // Setup the description of the dynamic matrix constant buffer that is in the vertex shader. matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC; matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType); matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; matrixBufferDesc.MiscFlags = 0; matrixBufferDesc.StructureByteStride = 0; // Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class. result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer); if (FAILED(result)) { return false; } return true; }