183 lines
5.3 KiB
C++

#include "physics.h"
Physics::Physics()
{
m_gravity = XMVectorSet(0.0f, -9.81f, 0.0f, 0.0f); // Initialize the gravity vector
}
Physics::Physics(const Physics& other)
{
m_gravity = other.m_gravity; // Copy the gravity value
}
Physics::~Physics()
{
}
// Get the gravity value
XMVECTOR Physics::GetGravity() const
{
return m_gravity;
}
// Define the gravity value
void Physics::SetGravity(XMVECTOR gravity)
{
m_gravity = gravity;
}
// Apply gravity to an object
void Physics::ApplyGravity(Object* object, float dragValue)
{
if (this == nullptr || object == nullptr) // Verify if 'this' and 'object' are not null
{
return;
}
if (!object->IsGrounded()) // Verify if the object is grounded
{
// Calculate the acceleration caused by gravity
XMVECTOR gravityAcceleration = m_gravity / object->GetMass();
// Add the gravity acceleration to the object's current acceleration
object->SetAcceleration(object->GetAcceleration() + gravityAcceleration);
// Calculate the acceleration caused by drag
XMVECTOR dragAcceleration = -object->GetVelocity() * dragValue / object->GetMass();
// Add the drag acceleration to the object's current acceleration
object->SetAcceleration(object->GetAcceleration() + dragAcceleration);
// Get the object velocity
XMVECTOR velocity = object->GetVelocity();
// Update the velocity with the object's acceleration
velocity += object->GetAcceleration();
// Set the new velocity
object->SetVelocity(velocity);
}
}
void Physics::AddForce(Object* object, XMVECTOR force)
{
if (object == nullptr) // Verify if the object is not null
{
return;
}
// Get the mass of the object
float mass = object->GetMass();
// Calculate the acceleration caused by the force
XMVECTOR acceleration = force / mass;
// Add the acceleration to the object's current acceleration
object->SetAcceleration(object->GetAcceleration() + acceleration);
}
bool Physics::IsColliding(Object* object1, Object* object2)
{
ObjectType type1 = object1->GetType();
ObjectType type2 = object2->GetType();
if (type1 == ObjectType::Unknown || type2 == ObjectType::Unknown)
{
return false;
}
if (type1 == ObjectType::Sphere && type2 == ObjectType::Sphere)
{
return SpheresOverlap(object1, object2);
}
if ((type1 == ObjectType::Cube && type2 == ObjectType::Sphere) ||
(type1 == ObjectType::Sphere && type2 == ObjectType::Cube))
{
if (type1 == ObjectType::Cube)
{
return SphereCubeOverlap(object1, object2);
}
else if (type1 == ObjectType::Sphere)
{
return SphereCubeOverlap(object2, object1);
}
}
else
{
return CubesOverlap(object1, object2);
}
return false;
}
/////////////////////////////////////////
// AABB method for collision detection //
/////////////////////////////////////////
bool Physics::CubesOverlap(Object* cube1, Object* cube2)
{
XMVECTOR position1 = cube1->GetPosition();
XMVECTOR position2 = cube2->GetPosition();
XMVECTOR scale1 = cube1->GetScale();
XMVECTOR scale2 = cube2->GetScale();
XMVECTOR min1 = position1 - scale1;
XMVECTOR max1 = position1 + scale1;
XMVECTOR min2 = position2 - scale2;
XMVECTOR max2 = position2 + scale2;
return (min1.m128_f32[0] <= max2.m128_f32[0] && max1.m128_f32[0] >= min2.m128_f32[0] &&
min1.m128_f32[1] <= max2.m128_f32[1] && max1.m128_f32[1] >= min2.m128_f32[1] &&
min1.m128_f32[2] <= max2.m128_f32[2] && max1.m128_f32[2] >= min2.m128_f32[2]);
}
bool Physics::SpheresOverlap(Object* sphere1, Object* sphere2)
{
XMVECTOR position1 = sphere1->GetPosition();
XMVECTOR position2 = sphere2->GetPosition();
XMVECTOR scale1 = sphere1->GetScale() / 2;
XMVECTOR scale2 = sphere2->GetScale() / 2;
float distance = sqrt(
(position1.m128_f32[0] - position2.m128_f32[0]) * (position1.m128_f32[0] - position2.m128_f32[0]) +
(position1.m128_f32[1] - position2.m128_f32[1]) * (position1.m128_f32[1] - position2.m128_f32[1]) +
(position1.m128_f32[2] - position2.m128_f32[2]) * (position1.m128_f32[2] - position2.m128_f32[2])
);
float radius1 = XMVectorGetX(XMVector3Length(scale1));
float radius2 = XMVectorGetX(XMVector3Length(scale2));
return distance < radius1 + radius2;
}
bool Physics::SphereCubeOverlap(Object* cube, Object* sphere)
{
XMVECTOR position1 = cube->GetPosition();
XMVECTOR position2 = sphere->GetPosition();
XMVECTOR scale1 = cube->GetScale();
XMVECTOR scale2 = sphere->GetScale() / 2;
XMVECTOR min1 = position1 - scale1;
XMVECTOR max1 = position1 + scale1;
// Get box closest point to sphere center by clamping
float x = max(min1.m128_f32[0], min(position2.m128_f32[0], max1.m128_f32[0]));
float y = max(min1.m128_f32[1], min(position2.m128_f32[1], max1.m128_f32[1]));
float z = max(min1.m128_f32[2], min(position2.m128_f32[2], max1.m128_f32[2]));
// This is the same as SpheresOverlap
float distance = sqrt(
(x - position2.m128_f32[0]) * (x - position2.m128_f32[0]) +
(y - position2.m128_f32[1]) * (y - position2.m128_f32[1]) +
(z - position2.m128_f32[2]) * (z - position2.m128_f32[2])
);
float radius = XMVectorGetX(XMVector3Length(scale2));
return distance < radius;
}