2024-04-08 16:11:58 +02:00

85 lines
2.1 KiB
GLSL

/////////////
// DEFINES //
/////////////
#define NUM_LIGHTS 4
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
cbuffer CameraBuffer
{
float3 cameraPosition;
float padding;
};
cbuffer LightPositionBuffer
{
float4 lightPosition[NUM_LIGHTS];
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
float3 normal : NORMAL;
float3 lightPos[NUM_LIGHTS] : TEXCOORD1;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType LightVertexShader(VertexInputType input)
{
PixelInputType output;
float4 worldPosition;
int i;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
// Calculate the normal vector against the world matrix only.
output.normal = mul(input.normal, (float3x3)worldMatrix);
// Normalize the normal vector.
output.normal = normalize(output.normal);
// Calculate the position of the vertex in the world.
worldPosition = mul(input.position, worldMatrix);
for(i=0; i<NUM_LIGHTS; i++)
{
// Determine the light positions based on the position of the lights and the position of the vertex in the world.
output.lightPos[i] = lightPosition[i].xyz - worldPosition.xyz;
// Normalize the light position vectors.
output.lightPos[i] = normalize(output.lightPos[i]);
}
return output;
}