khaotic-engine-Reborn/enginecustom/lightshaderclass.cpp

545 lines
18 KiB
C++

////////////////////////////////////////////////////////////////////////////////
// Filename: lightshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightshaderclass.h"
LightShaderClass::LightShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_cameraBuffer = 0;
m_lightBuffer = 0;
m_lightColorBuffer = 0;
m_lightPositionBuffer = 0;
}
LightShaderClass::LightShaderClass(const LightShaderClass& other)
{
}
LightShaderClass::~LightShaderClass()
{
}
bool LightShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
Logger::Get().Log("Initializing LightShaderClass", __FILE__, __LINE__, Logger::LogLevel::Initialize);
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
bool result;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"light.vs");
if (error != 0)
{
Logger::Get().Log("Failed to copy string", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"light.ps");
if (error != 0)
{
Logger::Get().Log("Failed to copy string", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
Logger::Get().Log("Failed to initialize shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
Logger::Get().Log("LightShaderClass initialized", __FILE__, __LINE__, Logger::LogLevel::Initialize);
return true;
}
void LightShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool LightShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT4 diffuseColor[], XMFLOAT4 lightPosition[])
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, texture, diffuseColor, lightPosition);
if(!result)
{
Logger::Get().Log("Failed to set shader parameters", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool LightShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
Logger::Get().Log("Initializing shader", __FILE__, __LINE__, Logger::LogLevel::Initialize);
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[3];
unsigned int numElements;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_BUFFER_DESC cameraBufferDesc;
D3D11_BUFFER_DESC lightColorBufferDesc;
D3D11_BUFFER_DESC lightPositionBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "LightVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
Logger::Get().Log("Failed to compile shader", __FILE__, __LINE__, Logger::LogLevel::Error);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "LightPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, &pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
Logger::Get().Log("Failed to compile shader", __FILE__, __LINE__, Logger::LogLevel::Error);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
Logger::Get().Log("Failed to create vertex shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
Logger::Get().Log("Failed to create pixel shader", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
polygonLayout[2].SemanticName = "NORMAL";
polygonLayout[2].SemanticIndex = 0;
polygonLayout[2].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[2].InputSlot = 0;
polygonLayout[2].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[2].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[2].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(),
&m_layout);
if (FAILED(result))
{
Logger::Get().Log("Failed to create input layout", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
Logger::Get().Log("Failed to create sampler state", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
Logger::Get().Log("Failed to create matrix buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Setup the description of the camera dynamic constant buffer that is in the vertex shader.
cameraBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
cameraBufferDesc.ByteWidth = sizeof(CameraBufferType);
cameraBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cameraBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cameraBufferDesc.MiscFlags = 0;
cameraBufferDesc.StructureByteStride = 0;
// Create the camera constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&cameraBufferDesc, NULL, &m_cameraBuffer);
if (FAILED(result))
{
Logger::Get().Log("Failed to create camera buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Setup the description of the dynamic constant buffer that is in the pixel shader.
lightColorBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightColorBufferDesc.ByteWidth = sizeof(LightColorBufferType);
lightColorBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightColorBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightColorBufferDesc.MiscFlags = 0;
lightColorBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the pixel shader constant buffer from within this class.
result = device->CreateBuffer(&lightColorBufferDesc, NULL, &m_lightColorBuffer);
if (FAILED(result))
{
Logger::Get().Log("Failed to create light color buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Setup the description of the dynamic constant buffer that is in the vertex shader.
lightPositionBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
lightPositionBufferDesc.ByteWidth = sizeof(LightPositionBufferType);
lightPositionBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
lightPositionBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
lightPositionBufferDesc.MiscFlags = 0;
lightPositionBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&lightPositionBufferDesc, NULL, &m_lightPositionBuffer);
if (FAILED(result))
{
Logger::Get().Log("Failed to create light position buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
Logger::Get().Log("Shader initialized", __FILE__, __LINE__, Logger::LogLevel::Initialize);
return true;
}
void LightShaderClass::ShutdownShader()
{
Logger::Get().Log("Shutting down LightShaderClass", __FILE__, __LINE__, Logger::LogLevel::Shutdown);
// Release the light constant buffers.
if (m_lightColorBuffer)
{
m_lightColorBuffer->Release();
m_lightColorBuffer = 0;
}
if (m_lightPositionBuffer)
{
m_lightPositionBuffer->Release();
m_lightPositionBuffer = 0;
}
// Release the light constant buffer.
if (m_lightBuffer)
{
m_lightBuffer->Release();
m_lightBuffer = 0;
}
// Release the camera constant buffer.
if (m_cameraBuffer)
{
m_cameraBuffer->Release();
m_cameraBuffer = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
Logger::Get().Log("LightShaderClass shut down", __FILE__, __LINE__, Logger::LogLevel::Shutdown);
return;
}
void LightShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned __int64 bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool LightShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
ID3D11ShaderResourceView* texture, XMFLOAT4 diffuseColor[], XMFLOAT4 lightPosition[])
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
unsigned int bufferNumber;
MatrixBufferType* dataPtr;
LightPositionBufferType* dataPtr2;
LightColorBufferType* dataPtr3;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
Logger::Get().Log("Failed to map matrix buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Now set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Lock the camera constant buffer so it can be written to.
result = deviceContext->Map(m_cameraBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
Logger::Get().Log("Failed to map camera buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Lock the light position constant buffer so it can be written to.
result = deviceContext->Map(m_lightPositionBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
Logger::Get().Log("Failed to map light position buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr2 = (LightPositionBufferType*)mappedResource.pData;
// Copy the light position variables into the constant buffer.
for (int i = 0; i < NUM_LIGHTS; i++)
{
dataPtr2->lightPosition[i] = lightPosition[i];
}
// Unlock the constant buffer.
deviceContext->Unmap(m_lightPositionBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 1;
// Finally set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_lightPositionBuffer);
// Set shader texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &texture);
// Lock the light color constant buffer so it can be written to.
result = deviceContext->Map(m_lightColorBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
Logger::Get().Log("Failed to map light color buffer", __FILE__, __LINE__, Logger::LogLevel::Error);
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr3 = (LightColorBufferType*)mappedResource.pData;
// Copy the light color variables into the constant buffer.
for (int i = 0; i < NUM_LIGHTS; i++)
{
dataPtr3->diffuseColor[i] = diffuseColor[i];
}
// Unlock the constant buffer.
deviceContext->Unmap(m_lightColorBuffer, 0);
// Set the position of the constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_lightColorBuffer);
return true;
}
void LightShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangle.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}