khaotic-engine-Reborn/enginecustom/watershaderclass.cpp
2024-04-11 11:02:48 +02:00

470 lines
15 KiB
C++

#include "watershaderclass.h"
WaterShaderClass::WaterShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_sampleState = 0;
m_matrixBuffer = 0;
m_reflectionBuffer = 0;
m_waterBuffer = 0;
}
WaterShaderClass::WaterShaderClass(const WaterShaderClass& other)
{
}
WaterShaderClass::~WaterShaderClass()
{
}
bool WaterShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
bool result;
wchar_t vsFilename[128];
wchar_t psFilename[128];
int error;
// Set the filename of the vertex shader.
error = wcscpy_s(vsFilename, 128, L"../Engine/water.vs");
if (error != 0)
{
return false;
}
// Set the filename of the pixel shader.
error = wcscpy_s(psFilename, 128, L"../Engine/water.ps");
if (error != 0)
{
return false;
}
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, vsFilename, psFilename);
if (!result)
{
return false;
}
return true;
}
void WaterShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool WaterShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix,
XMMATRIX reflectionMatrix, ID3D11ShaderResourceView* reflectionTexture, ID3D11ShaderResourceView* refractionTexture,
ID3D11ShaderResourceView* normalTexture, float waterTranslation, float reflectRefractScale)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, reflectionMatrix, reflectionTexture,
refractionTexture, normalTexture, waterTranslation, reflectRefractScale);
if (!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool WaterShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[2];
unsigned int numElements;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_SAMPLER_DESC samplerDesc;
D3D11_BUFFER_DESC reflectionBufferDesc;
D3D11_BUFFER_DESC waterBufferDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
// Compile the vertex shader code.
result = D3DCompileFromFile(vsFilename, NULL, NULL, "WaterVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&vertexShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Compile the pixel shader code.
result = D3DCompileFromFile(psFilename, NULL, NULL, "WaterPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0,
&pixelShaderBuffer, &errorMessage);
if (FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if (errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader);
if (FAILED(result))
{
return false;
}
// Create the pixel shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader);
if (FAILED(result))
{
return false;
}
// Create the vertex input layout description.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(),
vertexShaderBuffer->GetBufferSize(), &m_layout);
if (FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Setup the description of the dynamic matrix constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if (FAILED(result))
{
return false;
}
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if (FAILED(result))
{
return false;
}
// Setup the description of the reflection dynamic constant buffer that is in the vertex shader.
reflectionBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
reflectionBufferDesc.ByteWidth = sizeof(ReflectionBufferType);
reflectionBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
reflectionBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
reflectionBufferDesc.MiscFlags = 0;
reflectionBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&reflectionBufferDesc, NULL, &m_reflectionBuffer);
if (FAILED(result))
{
return false;
}
// Setup the description of the water dynamic constant buffer that is in the pixel shader.
waterBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
waterBufferDesc.ByteWidth = sizeof(WaterBufferType);
waterBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
waterBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
waterBufferDesc.MiscFlags = 0;
waterBufferDesc.StructureByteStride = 0;
// Create the constant buffer pointer so we can access the pixel shader constant buffer from within this class.
result = device->CreateBuffer(&waterBufferDesc, NULL, &m_waterBuffer);
if (FAILED(result))
{
return false;
}
return true;
}
void WaterShaderClass::ShutdownShader()
{
// Release the water constant buffer.
if (m_waterBuffer)
{
m_waterBuffer->Release();
m_waterBuffer = 0;
}
// Release the reflection constant buffer.
if (m_reflectionBuffer)
{
m_reflectionBuffer->Release();
m_reflectionBuffer = 0;
}
// Release the sampler state.
if (m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the matrix constant buffer.
if (m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the layout.
if (m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if (m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if (m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void WaterShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned long long bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for (i = 0; i < bufferSize; i++)
{
fout << compileErrors[i];
}
// Close the file.
fout.close();
// Release the error message.
errorMessage->Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool WaterShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, XMMATRIX worldMatrix, XMMATRIX viewMatrix, XMMATRIX projectionMatrix, XMMATRIX reflectionMatrix,
ID3D11ShaderResourceView* reflectionTexture, ID3D11ShaderResourceView* refractionTexture, ID3D11ShaderResourceView* normalTexture,
float waterTranslation, float reflectRefractScale)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
MatrixBufferType* dataPtr;
unsigned int bufferNumber;
ReflectionBufferType* dataPtr2;
WaterBufferType* dataPtr3;
// Transpose the matrices to prepare them for the shader.
worldMatrix = XMMatrixTranspose(worldMatrix);
viewMatrix = XMMatrixTranspose(viewMatrix);
projectionMatrix = XMMatrixTranspose(projectionMatrix);
reflectionMatrix = XMMatrixTranspose(reflectionMatrix);
// Lock the constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
bufferNumber = 0;
// Finanly set the constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
// Lock the reflection constant buffer so it can be written to.
result = deviceContext->Map(m_reflectionBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr2 = (ReflectionBufferType*)mappedResource.pData;
// Copy the reflection matrix into the constant buffer.
dataPtr2->reflection = reflectionMatrix;
// Unlock the constant buffer.
deviceContext->Unmap(m_reflectionBuffer, 0);
// Set the position of the reflection constant buffer in the vertex shader.
bufferNumber = 1;
// Finally set the reflection constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_reflectionBuffer);
// Set the reflection texture resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 1, &reflectionTexture);
// Set the refraction texture resource in the pixel shader.
deviceContext->PSSetShaderResources(1, 1, &refractionTexture);
// Set the normal map texture resource in the pixel shader.
deviceContext->PSSetShaderResources(2, 1, &normalTexture);
// Lock the water constant buffer so it can be written to.
result = deviceContext->Map(m_waterBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr3 = (WaterBufferType*)mappedResource.pData;
// Copy the water data into the constant buffer.
dataPtr3->waterTranslation = waterTranslation;
dataPtr3->reflectRefractScale = reflectRefractScale;
dataPtr3->padding = XMFLOAT2(0.0f, 0.0f);
// Unlock the constant buffer.
deviceContext->Unmap(m_waterBuffer, 0);
// Set the position of the water constant buffer in the pixel shader.
bufferNumber = 0;
// Finally set the water constant buffer in the pixel shader with the updated values.
deviceContext->PSSetConstantBuffers(bufferNumber, 1, &m_waterBuffer);
return true;
}
void WaterShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the geometry.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}